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EKULLBACK~LEIBLER INFORMATION FUNCTION AND THE SEQUENTIAL
SELECTION OF EXPERIMENTS TO DISCRIMINATE AMONG
SEVERAL LINEAR MODELS ‘

Abstract

by

Steven Michael Sidik

Assume that a finite set of potential linear models relating
several éontrolled variables to an observed variable is postulated
and that exactly one.of these modelé i5 the true modél. The prob-
lem is to sequentially design most inforﬁative experiments so that
the correct model can be determined with as little experimenfation
ag possible. We assume that the error variance of the prqgég§ is
known. In addition, we assume the statistician posgsesses ﬁ?iSr
informatiom which can be expressed as the prior probability that
each of .the proposed models is indeed the correct model and prior
multivafiate normal distributions on the parameters of each of the
postulated model equations.3 After each stage of sampling, the
prior distributions and.fhe observed data values are used to com—-
pute posterior probabilities of the models being the true one and
posterior digtributions on the parameters of the models. Then
sampling is terminated if eifther a prespecified number of observa-
. tions has been taken or if any of the pcsteri&r probabilities of -

the models exceeds a prespecified minimum stopping probability.

Upon termination of sampling, the model with the largest posterior

it



probability is chosen to be the correct medel. If sampling is not

to be-terﬁinated, the next experiment chosen is that one in the set
of allowable values of the controlied ﬁariables which maximizes the
expecﬁed Kullback-Leibler information function based upon the cur-

rent posterior probabilities and distributions.

An analytical study of this procedure is too complex and dif-
ficult to adequately achieve. Hence a number of Monte-Carlo simu-
latioh experiments were performed to obtain information about the
performance of this adaptive design procedure. Two basic types of
Monte~-Carlo experiments were performed. In the first, one of the
models was chosen to be used to generate the random observations

using known fixed values for the parameters. Then a large number

of observations were taken using the Kullback-Leibler information

functions as a critevion Lo choose the sequence of experiments. It

was found the posterior probability of the chosen model relatively
rapidly approaches the value of 1.0 and then fluctuates near 1.0.
The posterior mean of the parameters of the correct model also
rapidly approaches the known fixed values used to generate the ob-
servations. 1In the second type of experiment, oﬁe of the models was
chosen to be used to generate the random observations. Then for
various coﬁbinations of the maximum number of observationg, stopping
probability, prior distributions of the parameters, and error vari-
ance of the process, a large number of repetitiens of the sequential
design procedure were executed. Then a probabiliﬁy of correct se-

lection and average sample numher were calculated based upon the
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number of times the procedure chose the correct model and the number
of observations taken until termination. In general, it was found
that as long as the prior mean of the correct model is not too dis-
tant from the true value with respect to the means of the other

models the probability of correct selection is respectably high.
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.CHAPTER 1 - INTRODUCTION AND LITERATURE SURVEY

The general linear model has become one of fhe most-useful
statistical tools gvailable to the modern scientific experimenter.
There have been many books and papers written about techniques for
choosing the appropriate or "best'" linear model to fit to a set of
data already collected. In géneral, these have been methods of
hypothesis testing to determine which of a set of specified terms
in a model.equation may be dropped frgm the model. Much work has
also been done with regard to the problem ﬁf designing best or
optimal experiments to estimate the parameters of specified model
equations.,

Iu‘this“dissertdtien we study a sequential adaptive experi-
mental design procedure for a related problem. Assume that a finite
set of potential linear models relating certain controlled variables
to an observed variable is postulated and that exactly one of these
models is ﬁorrect. The problem is to sequentially desigg most in-
formative experiments so that the correct model equation can be de-
termined with as little experimentation as pessible, We also assume
that the error variance of the process is known. In addition, we
assume that the statistician possesses prior information which can

be expressed by the prior probability that each of the proposed

_models is indeed the correct model and prior multivariate normal

distributions on the parameters of the various models. We then de-

e
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rive an édaptive procedure for designing the successive experiments
usipg the Kullback-Leibler information function to maximize the
anticipated information for discriminating among the models. That
is, after each stage of sampling, the prior distributions and the
observed values are used to compute posterior probabilities of the
postulated models being correct and posterior distributions on the
parameters of the models. Then if sampling is not to be terminated,
the next experiment chosen is that which maximizes the expected
Kullback-Leibler information based on the current posterior proba-
bilities and distributions. Sampling.is terminated whenever either

a prespecified number of observations is finally taken or whenever

any of the posterior probabilities of the models exceeds a prespeci-

fied values Upon termination of sampling, the model with the larg-
est posterior probability is chosen to ke the correct model.

An analytical study of this procedure is too complex and dif-
ficult to adequately achieve. Hence a number of Monte-Carlo simula-
tion experiments were performed to obtain information about the per-
formance of this adaptive design procedure. Two basic tynes of
Monte-Cario experiments were performed. In the first, one of the
models was chosen to be used to generéte the random observations
using known fixed values for the parameters. Then a large number
of observations were taken using the Kullback-Leibler information
d4s a criterion to choose the sequence of experiments. It was found
the posterior probability of the chosen model relatively rapidly

approaches the value of 1.0 and then fluctuates near 1.0. The




[+

posterior mean of the pafameters of the correct model alsq rapidly
approach the known fixed values used to generate the observations.
In the second type of experiment, one of the models Qas chosen to

- be used to generate the random observations. Then for various’com-
binations of the maximum number of observations, stopping proba-
bility, prior distributions of the parameters, and error variance
of the process, a large number of repetitions of the sequential
design procedure were executed. Then a probability of correct se-
lection and average sample number were calculated based upon the
number of times the procedure chose the correct model and the num-
ber of Abservations taken until termination. In general,-it was

- found that as long as the prior mean of the correct model is not
too distant from the true value with respect to the meags of the
other models the‘probability of correct selection is.respectably
high.

We now briefly indicate the general organization of the
dissertation. In Chapter 2 the notation used is described and the
structure of the linear models is derived. Chapter 3 then develops
the distribution theory which will be basic to the remainder of the
dissertation. 1In particular, the posterior probabilities of the
models, the posterior distributions of the parameters, and the

‘Markovian nature of the sampling proceés are developed. Some large
sample results are then derived for the situation where the sequence
of experiments is specified in aé&ance of experimenting. These re-

sults do not thus formally apply to the adaptive design procedure.

[
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We find, however; that they do appear to be true to a surprising
. extent and provide some help in explaining énd interpreting the
Monte-Carlo results.

In Chapter 4, the Kullback-Leibler information conéept is
introduced and the derivation of the anticipated information as
a function of the current posterior probabilities of the models
and the current posterior distributions of the parameters is pre-
sented. This anticipated information is the criterion function
used to define the most informative experiment. Its use is dis-

-

cussed both from the point of view of its relation to the expected

decrease in entropy and the point of view that it results in a

very simple function measuring the amount by which the expected
value of t;e cbserved variable under each model is separated.

The sequential experiment selection, stopping, and model se-
lection rules are presented in Chapter 5.

In Chapter 6, the Monte-Carlec simulation experiments are de-
. scribed and the results presented and discussed. Chapter 7 presents
an example of application. Several appendixes are also i;cluded.
0f most importance is appendix A which presents the computer pro-
gram used to perform the simulation experiments.

We now turn to a discussion of works‘by éarlier authors who
have considered similar problems.

Lindley (1956) was.one of .the first to comsider the general

idea of applying information concepts to the problems of statistical

inference. He modified the concept of entropy and developed a num-
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ber of interesﬁing general results on the amount of infeormation in
an experiment about the parameters of the distribution of a ranaom
variable. -

Stone (1959) was one of the first to consider information con-
cepts as applied to designing and comparing regressioﬁ experiments.,
He used.a Bayesian framework, but the problem he considers is that
of parameter estimation rather than that of model selection.

Another early and more relevant paper is that of Chernoff

{1959) who applied the Kullback-Leibler information function to the

sequential design of experiments when the cost of experimenting is
small. His results are valid for the case of two terminal decisions
and a2 finite number of experiments and states of naturg. These re-
sults have been generalized by Albert (1961) to an infinite nunber
of states of nature and by Bessler (1960) to an infinite numbe; of
experiments and k terminal actions. Kiefer and Sacks (1963) have
also.proyided some extensions.

The statement of Chernoff's problem and the problem considered
here are not identical and we proceed by analogizing his results to
the prbblem at hand. 1In the context of the current problem, he
would proceed by first assuming that at each stage of sampling the
model with the largest posterior probability is the correct one.
Then if A denotes the‘space of allowable experiments, define the

Kullback-Leibler (K~L) information about model j in experiment

acA when model i dis true as

=



£,(vla)

I(a,i,j) = in —E'J'-(—y—la—)‘

fityla)dy

where fi(y]a) denotes the prebability density of y under model 1
when experiment acA 1is performed. Let { denote the model with
the highest current probability of being the corvrect one. Then in
analogy.to Chernoff, we define the optimal experiment as a(i) where

a(i) is defined by that experiment satisfying

I[a(i),i,H] = sup inf I(a,i,k)
ach k#i

That is, Chernoff represents the problem as a game between nature
and the statistician where the statistician maximizes over A and
nature minimizes over the alternative models assuming i is the
correct model. Chernoff also specifically derives a stopping rule
which we do not discuss here,

Huntér and Reiner (1965) .considered a sequential design pro-
cedure for discriminating between. two model equations. Their proce-

dure chooses the experimental conditions which, based upon maximum

likelihood .estimates of the parameters from the data already col-
lected, separate the expected values of the observed variable under
the two models by as much as possible.

Box and Hill (1967) discussed the use of the Kullback-Leibler
informa%ion function, deriving it from comsiderations involving the
entropy function. They consider the use of the X-L dinformation

function to sequentially discriminate among several mechanistic

(nonlinear) model equations. Besides the fact that they consider



nonliﬁeaf models, their approach is differenr in the sense that al-
though they do assume prior probabilities on the proposed models,
and compute posterior probabilities from the cbservations, they as-
sume the parameters of the model equations are known constants.
Meeter, Pirie, and Blot (1970} have done a number of computer
simulations comparing the methods of Chernoff and of Box and Hill.
They found that the Box-Hill procedure performed quite well on the
examples in comparison to Chernoff's procedure. It is interesting
to note that Chernoff seems to be the only one of these authors
who defined an explicit rule for terminating sampling. Although
Chernoff's procedure is known to be asymptotically optimal, it is

also known to require very large sample sizes.

]




CHAPTER 2
STRUCTURE OF THE LINEAR MODELS
In the theory of the general linear statistical model, we are
concerned with problems involving model equations relating k con=-
trolled variables (zi; i=1, .. .,k) to an observed varisble (y).

The form of the model equation is required to be

I
y = é :Bihi(zls o s ey Z ) + &
i=1

The kncwn functions hi are arbitrary except that they may not con-
tain any unknown parameters. The equation is linear in the unknown
parametzars Bi and ‘e is assumed to be a random variable with ex-
pectation zero and known finite variance. We may write
X, = hi(zl, . - .,zk) and henceforth express the models in terms of
the X, variables. If n observations are made upon y we let
xji denote the vglue of xi- at which the jth observatiqn is made.
Thus for the n observations the model may conveniently be written
as

y=ME+ ¢ (2-1)

where

>
y. = (ylﬂyzl v ‘!}’n)
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and the e, are uncorrelatedf The matrix M is called tﬁe désign
matrix for the experiment consisting of the 1 observations. The

problem of experimental design is that of choosing the ‘in values
in some "optimal" manner.

In certain situations in practice the experimerter can postu-
late several possible meodels involving different functions of the
z, variables which correspond to several possible mechanistic or
empirically based theories. These may lead to the various models
Acontaining different sets cf X There may be some overlapping of
the x; among the models or there may be none.

| There are then two problems requiring solution. The first is
that of choosing experiment designs which will enable the experi-
menter to decide which of the potential models is the correct one.

Then, having chosen the model, the parameters must be estimated.

The second problem has many solutions using a variety of standard
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techniques. Tﬁis dissertation concerns itself primarily with a
"method of designing experiments to provide information for choosing
the appropriate model equation.

We assume there are L different competing model equations.
These models may be combined intc one large possible model equa-
tion and then the L hypothetical medels are equivalent to there
being L hypotheses restricting certain_sets of parameters of the
large model to be a priori zero. For example, we might have two

controlled variables Xy and Xy And suppose the model equations

o
postulated are:

. N EY
Hl. y = 81 xl + ¢
. = (2D
. H2. -y ~_82 X, + €

. N &) (3 .
HB. ¥ ~_Sl X + 82 X, + €

where BiJ) denotes the coefficient of conmtrolled wariable i in
model equation j. The distinction must be made hecause although

k . . : : . .
) are coefficients of variable 1, their distribu-

BFJ) and s?
i i
tions need not be the same. This notation is clumsy, however, and

if we implicitly accept the fact that the distributions of the Sij)

depend upon the model, we may more simply rewrite the models as

=
[
]
I

= Slxl + £

_Bzxz + ¢

[\
g
[

H3: vy = lel + Bzxz + €

We say that models 1 and 2 are nested within model 3. This is




) =+ >
equivalent to writing one model as y = lel + 82x2 +e=X'B+ e

and hypothesizing

Hy: By # 0,8, # 0

In this sense it is seen that the terms model and hypothesis are
interchangeable and will be used interchangeably in the remainder

©

of this dissertation. The-notation we adopt is that H, claims

-+ -+ -
=M +
¥ Lul £

where Zﬁ is the appropriate kE x 1 wveetor of B's from T which

appear in model § and M, is the appropriate matrix of x's.

[)

We now precisely state the three basic distributional assump-
tions about.the parameters and random variables pf the models:

{1} The vector E’ follows a multivariate normal distribution
with mean 6 and precision matrix T. T is assumed known. {The
precision matrix is the inverse of the covariance matrix of the -
distribution,) Since T .must be positive definite symmetric, we
need only consider the special case where T = 171 since linear

transformation of the y reduces all other cases to this one. Note

- -
that we assume 1 1is known. Thus & ~ N(Q,tI}.

) (2) For each & =1, . . .,L the prior distribution of Zg is
-+ -+
ay = NG 5% o)
h v d ¥ k
~where UR,O an 2,0 are known.

(3) The prior probability that the E[h model is the correct

B i T N L o B
e U g e ey rie e .- T A Lt = H T i aa I ey - - T T
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. We re—

model equation is assumed sﬁecified and denoted by Bg 0
. >

L .
uire ] = 1.0. In order to:satisfy this requirement in a
g 2,0

=1 :

completely pfecise manner we must make the models mutually exclu-
sive. As described so far, this need not be true. However, this
iz a simple broblem to get around for the following reason. Each
of the H specifies that gg is an element of a k_,Z dimensional

L L

subset of K-space which we denote as EE' For any pair Hj and

Hk we have either (1) Ejjj‘Ek, (2) Ek:3 Ej’ or {3) neither‘space
containg the other and Ejfﬁ Ek has measure zeroc with respect to
H, and H,. For case 1 define 8, as @, = Pr{a.eE, - E }. But
3 k h| 3 i3 k
Ek has zero measure with respect.to Hj and hence the distribution

N .
function of aj restricted to Ej - Ek is identical to the distri-

bution function of Zj over all of Ej. Thus for any practical
purpose, the fact that EjZB Ek does not affect any probability
computations. Similar arguments apply to cases two and three.

We now describe the space A of allowable experiments in
more detail. Iflthe number of elements of fk is K, then a choice
of experiment aeA is composed of the number J of ébservations

to take and J vectors from some subset of Fuclidean K-space. The

J vectors specify the values of the cmtrolled variables’ xji' At
the jth experiment or jth stage of experimenting the particular

choice from A 1is denoted aj. =



CHAPTER 3
PREREQUISITE DISTRIBUTION THEORY

In the remainder of this dissertation, much use 'will be made
of the distribution of the observed variable, the posterior proba-
bilities of the models, and the posterior distributions of the pa-
rameters of the model equations. The first part-of this chaptex
Ldevelops these distributions. The second part derives the fact that
the sampling procedure is Markovian in nature and @rovides a nota-
fion for describing the state of the process. The third section of
this chapter discusses some results on the limiting behavior of the
posterior distributions when the sequence of experimenfs is chosén
in advance. The strong restrictions that must be made to accoﬁplish
these large sample results and the fact that they do not describe
the adéptive process might lead one to believe that they are not
wortﬁwhiie pursuing. i

We find invchapter 6, however, that there is a close analogy
between these results and the behavior of the adaptive procedure,
and that these results help explain and interpret the Monte Carlo

simulation results.

3.1 Posterior and Marginal Distributions

5
- Let = £ (y.

+ ) [l +
. J+l|aj+l’ai) de?ote the density function of the

§j+l under 'HE when the parameter values are given by EE

at stage j + 1 of sampling. Let the probability density functioca

vector



-14

of Ei after Ij stages of sampling be denoted ER j(g). This is
, .

a prepostericr density since it serves as the posterior density of

32 after j stages of sampling and the prior density of 32 be-

fore the j + 1St stage of sampling occurs.

Lemma 3.1: After j stages of sampling, gg follows a multivariate

>
normal distribution with mean vector My g and precision matrix
. il |

Wg i That is, after j Dstages of sampling,
)]
- -
@ " Mg, 5%, 50
owhere
1
¥ =Y ., _ +M IM |
2,3 %,j-1 A T
i ] _
=H0" E Mo,1™Mg,1 (3-1)
i=1 )
and | )
> -1 t -+
. =¥ M, Ty, + V¥ .
Vg T Y g M g™t Y gt g0
J
=yt M Ty, + V¥ (3-2)
2,3 p,i7 %£,0%¢,0
1i=1
and where Mz N ~denotes the design matrix specified by ay under
s :
- HR"_

N .
Proof: By Bayes theorem, if yj is the observed vector at stage j

> . -»
fg(yilaj,d)éz,j_l(u)

>
’ _ > - Sk, K
o \,/r\- £ GylapEney 5 GO0

> >
la ey (@ (3-3)
. .The symbol « means ''proportional to' and is used in the context of

DeGroots (1970, p. 160) usage. Thus



15

Ez,j(a) =2

where (dropping subscripts)
1 > - + 1 ~ >
Q= (M3 - ¥) T3 - ¥ + @ - W) ¥ - )

Since T and Y are positive definite symmetric we can write

Q 3|(W + M'TM)& - 2(3'? + ;'TM)Q + (terms not involving 3)

(o -+ Mt + ¥ (v o+ um)

. [g - (¥ + M'TM)-I(M'T? + ?ﬁ)] + (terms not invelving 3)
The terms not involving a may be factored out through use of the
proportionality device, leaving the keérnel of a multivariate normal

distribution with parameters as specified by the lemma. Thus gl

is distributed as claimed.

| Q.E.D.
Owen (;970) has derived a result similar to Lemma 3.1 in the
case of.a two factor experiment where the factors are treatments
and blocks.

We now turn to determining the distribution of This

-
_ Y1
is done in two stages. First we do not know which of the models is

in fact the correct one. Then for any given model, we do not know

-> - > .
the value of ape Let fi(yj+1]aj+1,a) denote the distribution of
§j+l under H, when experiment aj+l€A is performed and 32 is
specified. Since we do not know Ez we must average this distribu-
L] _)- + .
tion over all oy Let fﬁ(yj+l[aj+l) denote the mixture of the
a I ’ -+ * Yy
densities fﬁ(yj+l]aj+l’m) with respect to the marginal posterior
+
of d, .

%
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L]

Lemma 3.2 The conditional distribution of ;} given '’ HQ and a‘,L

¥
igs a multivariate normal distribution with mazm. vector SR ; and

h ]

precision matrix Rﬂ 1 where
. N Mad ]
R, ,=T|I -M M, .TM + ¥ lM .T] (3-4)
Ry [ E,j( 2,37 8,3 L,d-10  R,]
3 = RT.TM M .TM + ¥ )'lw " (3-5)

E,j %sd fdsj( R'sj E'sj Q,j—l :'(5:5—1112’:.]._1

Proof: The required mixture distribution is g:iven by

> > - B
£ .la.) = £ ) A E. . L (a)do e
R(YJ|aJ) \5/P\ g(yjlaj’j) 31

lm \jr\e_Q/z dg
Xy

_ 2 L - > ’ L *>
Q - (Yj Mﬂ,ju) T(y‘j Mz,ja‘) + (0‘ ]anf,j"l) ‘Ji’j_l(a pE,j—l)

where

ST 4+ WS - 2o+ W+ o TS + )
+y'Ty + 1’9
ST + e - et T+ ¥) 1T + ) T ha Ty + W)
'S+ V) o'+ v o'y + oD
- _(M'T? o o™+ TS D) o+ YTV R 0T
The first three terms yield the gquadratic forw
Q = o - '™+ ottty + vn]’ - o' 4+ -t}')
' C 13- ' v whot'ty + ¥
-Q1/2

The remainder of Q does not involve % and e is the

—Q1/2

kernel of a multivariate normal distribution =¢ that when e

(A

A A O R P A AR B OSTN PR A L s ey T T EL A T ‘_.‘gx,':x%ﬂ?:' D o i e vy

Y
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]

: - .
is integrated over o we remain with

3 _Qz/z
£y, 5-10yla)e= e

. Where

It

Q, —or'Ty + v o'+ 0 It ) S + oty

fl

YT - MO T + 9T 0T - e + vy Led
+ (terms not involving ;)

=°(§ - g)'R(? - ?) + (terms not involving ;) .

The terms not involving v° may be factored out via the propor-

tionality device leaving

PO
—{y- R, L0
¥ (? Ia ) « e & 52’3) %3
A R

This is the kernel of a multivariate normal distribution with

mean vector and precision matrix as claimed. Thus

> R
°2,1 2,3

the density of yj given HR and aj is given by

- ~3/2 11/2 1o -
£ (7, = (2r R, .|/ exp{-> 3, -5, JOR, .(3. - 5, .
(ylap = @R, ] p{?- Oy 75 Byl o E,Jﬁ

u (3-6)
° Q.E.D.
Since the true model is unknown we now compute the mixture of
the distributions of Lemma 3.2 with respect to the probabilities
Bz,j as
L

== p f e -" B ' -
£lyslay) > B 51520y 8 (3-7)
2=1 |

To compute the posterior: probability of each model being cor-

RN aE T S il e R LR T I B I R K A s LN T
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rect after the observation yj+1' is obtained, we apply Béyes theorem

directly to get

)6

la, : _
J+1° 8,4 (3-8)

+
fz(yjﬂ

£, |a. )8
kY3411 %5417 Yk, g

- 3,2 Markovian Nature of Sampling. Process

Consider a sequence of random variables wl,wz, < + .« which

take on values in a sample space or state space {. We let F de-

note the o-field of subsets of { for which probabilities are de-

[

fined. The sequence of random variables Wi form a Markov Process

if for every ‘qur and for all LAEIREE "WG in , and all for n,
n= 1,2,31 « « +» we have
Rr{wn+lsF|wl =Wy, e WS wn}
= Pr{W_, eF[u = w }

H

\J/ﬁ\gn+1(w|wh)dw (3-9)
F

where (w[wh) denotes the generalized conditional pzebability

gn+l

density function of Wn+ If the conditionzl probabilities in

1
equation (3-9), equivalently the By do not depend upon mn the
transition process is called statienary. 'The state space in this

paper can be described by a vector containing: (1) the probabili-

ties © (2) the elements of the vectors describing the current

'Q,!

posterior means under the various HE’ and (3} the lower triangular

nart af the rurrent nagtreriny nrecininn matricec under The garinic

HR' Thus
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' 1 2 (1 2 (1
0 = {%l’ . . .,BL,ui ),ui ), . "UZ ),ué ), | ), . 4 ey
(Kq,) (i 1) (Kp,,Kp) = (1
4 s 47 = —oo <
L ,?l . o ,,WL ‘ 6 1.0, < My +eo
=1
Wi positive definite for 1 =1, . . .,{} (3-10)

For any given state weQ the transition to the neﬁt state depeﬁds
only upon the state w and the experiment acA that is chosen.
This is true because a detemines the posteriér precision
matrices regardless of the value of vy, and the posterior means
ﬁz(y) and probabilities 3(y) are determined by equarions (3-1)
and (3-8) which again depend only upon w, y, and a. Thus the
transition process on the states is Markovian. The process is
stationaryz alse , since for given initial £ the successive
gy, domot depend upon n. The transition function may be described
as follows. Definme a mapping T:fxY +~ 2 and let Q(0xY) denote
the Borel sets on Y and Q(R) denote the Borel sets on . Let

T_l(F) denote the inverse image of F ‘where FeQ(R) and

"

T_l(F)sQ(QXY). Then if w' denotes the state of the system after

sampling,

L ,
Pr(w'eF|w,a) = \‘/r\ E eifi(yla,w)dy
i=1

bw,yle TR
3.3 Larce Sample and Limiting Results

Even though this paper is concerned primarily with small
' sample procedures, it is interesting and informative to know the

large sample or limiting behavior of the parameters and the sampilng
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process. Unfortunately, for the édaptive procedure this is an ex-—
tremely difficult subject to study. Thus we do not study the adap-
tive procedure here but instead cﬁnsider the experiment selection
procedure under the restrictions listed below in the hope that these
results will illuminate the adaptive procedure in some sense,

(1) Assume A 1is finite with N(A) elements, and represented

as

A= (oD L@ LW,

s o+ o

(2) An infinite sequence {aj} is specified such that as the

number of experiments approaches infinity, the proportion of times

that a(l) is performed approaches 19 with 0 < Py < 1 and
Epi = 1.0, The experiments aj are chosen independently of each
other. ’

(3) Assume Hi*l is the true model and that ﬁ* 1s the true
value of the parameters in the model.

(4) Assume that 5nly one obhservation is taken in each experi-
ment a‘i).

{5) Assume that the structure of A is such that all matrices
under consideration are nonsingular,

It should be noted that the most restrictive of the above as-
sumptions is the second. For in a true seduéntial decision proce~
dure, the actual experiment chosen is a random variable depending
vpon the previous observations obtained. Since we are in fact study-
ing a problem other than the one of most importance the remainder of

T T T T [ I T PR . Y - \ . X
The fhopror wlll ToUTDL JIvAllpld iV Loguivns Uewall auu bhic lesUils




obtained cannot be rigorously applied to the sequential procedure.
It will be seen in Chapter 6, however, that fairly extensive Monte
"~ Carlo simulations seem to bear up the general conclusions reached
here.

Let k(j) dencte the superscript of the experiment performed
at stage j; Thus if a0 = a(s), then k{(10) = 5. Alse let

L)

n(i,3) denote the number of. times is performed in the se-

quence of experiments up to and including the jth stage., Let M

(1)

L §

denote the design matrix under H£ when a is closen.

= =

Lemma 3.3 Under the above assumptions the posterior precision

matrices and mean vectors converge with probability one ags § -+ =

to:

N(A)

L _ '
5T Yg,y T Yy T E : Pty Mot

(
{=1

H

N(A)
> -1 \"\ 1 ok
Me,i () 2 ¢ PiMly iMyx 5V

=1

Proof: To prove the first limit, recall from equation (3-1) that

3
]
Ye,0 Y07 E :TMIL,k(i)MR,k(i)
S =

Thus
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3
1 1 1 ..
T = == + -~ M M .
37 ¥,5 57 Y0 é ,\rj g, k(1) k(1)
i=1
N(A)
1 n(i,i) ,,'
= 7 M M
37 Ye0t E e YT
i=1 .
As j - =, the first term goes to zero and the factors Eﬁilll-+ Py
by assumption.
To prove the second part note that yj = Mi*,k(J)ﬁ* + Ej

where Ej ~ N(0,T7). Using the second form of equation (3-2) we get

3>

- 3 -
"l 1 -
Mg T gy 4T 2 >M£,k(i)yi ¥ o%e0 (3-11)
= )

Then substituting the expression for yj into equation (3-11) gives .

N{A)
> -1 ; : o ! >
Ug_,j - (‘}{R,,j) n(l,J)TMﬂ,iMi*,iu
i=1
N(A) b
+ M 5 + ¥
t %,i *0’km), i} © T2,0"%,0
i=1 m=1
where &, . denotes the Kronecker delta function. Thus
3
- 1 :
] a *
b= A ) 03 'y, 3
%51 it &,3 h| 2,4 747,1
i=1
N{A) h|
' 1 1 >
+ § : Mo,il3 § :Emék(m),i 5t 1e,0%%,0
i=1 m=1

From assumption 2 we know that n(i,j) += as j - <« and since the

B L (At i e s e e e S R ST e i e T e
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e form a sequence of independent and identically distributed ran-
dom wvariables, the strong law of large numbers may be applied to

show for 1 =1, . . .,L

J
. 3 .-—--.———1 = ==
Pr lim NERD) E emék(m)’i 0 1.9
m=1,

n(i,j)—m

Since L. 0 as J + « °we then have

T
@ ‘
, {Iz’j 2 ¥, D P-%—L_ilmi’imi*’i oF
=1
This sequence will not have a limit unless 1lim EL¥L1L = Py exists,

jh.»oo

"If such a limit exists, the lemma follows immediately.
. Q.E.D.

Lemma 3.4 Under the assumptions stated, R2 ; =+ 1 drrespective of

3.

{a,} and

S R
N (A)

— [ B%
Se,9 * My ey ) } : Pty gMyx Sl
- =1

for large enough 1.

Proof: From equation (3-4) and the assumpticns

Roui = T{l‘o - M@ Mo, T MG,k l”m(j)}

L}
As > m’.{wa,j + th,k(j)ME,k(j)] =+ (=) and hence its inverse

<+ (0). But then R£ -+ T as claimed.

»J
From equation (3-5)

_ -1 ' g -1, =
%, 7 Bo,y) ﬁMa,Hj}[Ma,k(j)Mﬁ,k<j>T ey Wz,j”a,j}




' -1 )
lar h 3, M M LT+ Y ¥, ., i toti-
For large enough j, | 2k, k() 2,3} 2,3 is asymptoti

cally like the identity matrix, I; so that

S >
£, ° 1 e kM,

(&)

. -1 1
ME,k(j)(TR) E : pyMy Myw
. ’ '=l

s

"
u

2

- We note that if & = i*, then from the definition of ?R, we have

-

s, P ‘v
%, 7 ST k@)Y

as expected.
G.E.D.

Lemma 3.5 If Hi* is the true hypothesis and the model of Hi*

i1s nested within the model of HQ’ then under the above assumptions

and assuming the parameter vectors are rearranged appropriately

© -ﬁ*
pedy. sl D=1.0
0.3 \g
Proof: From Lemma 3.3 we have
(A)
o 4»?_1 M' M o
Pe,5 7 s Pi%e,171%,4)"
—
If the parameters are rearranged appreopriately then M2 ;  may be
)
written
Mooi = (Myx ooMy )
where ﬁz i denotes the design matrix corresponding to the inde-
) ) .

pendent variables in HQ but not in Hi*. Thus

1
M M
, i%,4%%, !
R T A ﬁ' Mox ﬁ
i A7, 1

e e
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and
Yy - Yy
¥, = ' )
f
Y% g Ty
where
N{A)
1)
Yix = Pityw Mis 4
. i=1
N(A) )
. -
wl*,ﬁ- - z : pJ'.M:i ,1M5L i
i=1
and
N{A)
¥y = E : PsMy, M s
i=1

Thus from a well known identity (e.g., Graybill (1969), p. 165)

— ], -1 ' -1 . (~ t -1
- e A -

1 LR L IPLY) lyi"‘,sa) L S L IR ;T
\PE - T ,.,,....__._,_--l-.-..-----‘v.--... ________________
v _ &' -1 . -1, ("’ ! -1 )

(wg wi*,zwi*?i*,z) Yiw gYikr (¥ T ¥ix ViRV
Also =2
1 +
b (A) ‘ N(A) lelk,1 i Y.
le,Q, ,1 1 ,1 = ,
i=7 i=1 1 2 i 1* i ‘Pl*,ﬂ

Thus



26

(fo s=v s il Ty B
7 Ti% ety ¥ iR
1
— _lf " g - FJ.. ﬂ} ll
wi*qi“,ﬂ(wl Wi“,g?iﬂwiﬁag) Hiﬁ’£
_ Wi*
WQ =
Re -1
i%,% e o ~1
(?2 LPi*,gwi*wi*,z) LELEP)
R ¥oay y
L g7 TEF e tiFN* o) TiF g B
[I]
0
upon application of Lemma 3.6 which follows. Thus

>

(§

>%

Lemma 3.6  (Problem 2.9 of Rao (1965)) If

Q.E.D.

A and D are matrices

possessing dinverges, then
(a+0B) L= at - a7le@'a e+ p 7y lptA
Proof: By direct multiplication we only need show
I=(a+8BY@A™t -atB@'a™ e + D-l);lB'A_l
=1 -@'A" B+ 1A 4 ppp'at
- oA BB ATl + p ) lp'sE
=1-B-@BA B+ H ™ 4 -pp'alsE aiE + b L a7t
-1-B[D ] (1 + pe'a " tBI[B"A™ B + D”ij’l]B'A”l
=1-B[D-0d[pT + B'AHIB][D_l + '8 gy hp'a7t
=1 -8[D-p]8at
=1 Q.E.D.

e ren e —



27 ‘

To apply this result to Lemma 3.5 simply set C

A= Y. a
i

B=Yiy
=o=1

D= "Yg

We now turn to consideration of the limiting behavior of BE s
)
Computer simulations for both nested and non-nested cases in-
dicate that for any k where Hi* is not nested 1in Hk’ Bk,j + 0.0
fairly rapidly and steadily. 1If Hi* is nested in Hk then it

seems that 0.0. The rate is initially rapid but then be-

a8 -+
k.3

comes very slow and it behaves in a very erratic manner. These

points are discussed in some detail in Chapger 6.
It sﬁguld be reiterated and these discussiéns have assumed

the sequence {a,} to be specified and fixed for the sequence of ex-

periments. In a sequential decision problem the sequence {aj] is

not fixed, but k(j) is in faet a random variable whose distribu-

tion depends upon k(1) for i < j and the ¥ for 1 < j.
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CHAPTER 4

ENTROPY FUN&iIONS AND THE KULLBACK~LEIBLER INFORMATION FUNCTION

When comparing a number of experiments to determine which is
the optimal one to perform, one must define optimal. In this dis~-
sertation, that experiment which yields the largest expected K-L
information is defined as the optimal experiment. In particular,
let I(w,a) denote the expected K-L information as a function of
the experiment a and the current state w of the process. This
function will be specified explicitly later. In this chapter, we
first describe hoew the K-L information aris;s from attempting to
reduce th; entropy of the probabilities of the models. We then
develop an expression for I(w,a) and finally discuss the opera-
tional meaning of the use of I(w,a) from a heuristic point of
view.

4.1 Development of the K-L Information Function

The problem under consideration here is that we must choose
one of a set of postulated model equations. For each model we have
the posterior probability _Bg,j that it is the correct cne. We
would like to choose experiments which cause the posterior proba-
bility of the correct model to increase most rapidly. An indirect
method of accomplishing this is to choose experiments which most
rapidlf decrease the entropy of the set of probabilities 82 .+ The

entropy is defined as

28




e b el el mpeeshetecarfiosa s e eectedllae

ey

i

29

L

£ w) = - EBM 1n(a, )

L=1
It can be verified that the entropy attains a maximum when all the
probabilities are equal and attains a minimum when any one of the‘
probabilities is one aﬁd the rest are zero. ‘

Box and Hill (1967) proposed the use of the expected decrease
between the entropy at the current stage of sgmpling and the antici-
pated entropy at the next stage of sampling as the criterion for se-
lection of experiments. They found, however, that the entropy func-
tion is quite intractable analytically and applied a well-known in-
equality to show the expected K-L information function provides an
upper bound on the reduction of entropy. Let Bi(;|w,a) denote the
posterior probability of model 1 1if the value §‘ is observed when
the state was w. Let w(?) denote the state of the process after

-
observing the value y when it was in state w. Then the antici-

pated entropy is given by

: o L ‘_ “ : .
e@lv( al) = -f{E 6, lv,a)1nle, Glw,a) HEG|u,2)dy

=1
Thus if the current state of the sampling process iz wefll, and the
experiment acA is performed, the expected decrease in entropy,

R{w,a), is then defined as
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R{w,a) =€(w) - E{éf[w(;),a]}
L - L ' |
= "D Gi 11’1('81) + Eei(;fw,a)'ln[ei(;lw,a)] >
i= i=1 ..
L . '
B
k=1

L L N Ggfg(mw,a) N
= — % Bi ln(ei) + E Ggfg(ﬂw,a)ln I R {dy
=1 2=1 D kak(ylw,a)

. k=1
L L | > -
Y > E(}’IW,,E}) >
; ) Gg ? y Gifg(y|w,a)ln —f_fi@. v ) dy (4-1)
- 1= . .

by application of the following inequality (Kullback (1969), p. 15)

~— -

w,a) d;

o

| A

=

L f (;|w,a) £ (;Iw,a)
Eeifz(}’]w,a)ln[fi(_y, J > £, Flw,2) a2

W,a) L o
i=1 _ . E kak(y|w,a)
: k=1 i
Let
‘ - fi(;lwsa)
I(w,a,i,q) = fi(y|w,a)ln f——(‘m dy (4-2)
j b

We note I(w,a2,i,j) is defined as the expected amount of in-
formation in the observations from experiment a for discriminating
against Hj in favor of Hi' Let ?Q(W’a) denote the matrix whose
i,j element is I{w,a,i,j). Then the inequality (4-1) may be

written as
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R(w,a) < 6 Q0w,a)8 = I(w,a) | (4-3)
Meeter et al. (1970) proposed the following heuristic argument in
favor of using I{w,a). If one knew that Hi were indeed the cor-
rect hfpothesis and wished to maximize the information about Hk

for k # i, then it would be natural to maximize

SkI(w,a,i,k)
ki

©

But since Hi is assumed correct only with probability ei, it is

<&

equallj natural to multiply the foregoing expression by Si and sum

over i. But in doing this, one does end up with I{w,a).

4.2 Evaluation of K~L Information Function

From equation (3-6) we have (if \§' is Jx1} that the density

of ; under Ry is given by

P I [E S
1/23—1/2(}?—'32’) RR: (Y-S.Qz)

£,Gla) = 2o ™2, |
Hence
-+ % ! >
£ 2 'I 2y s enlfzgy—sm> R (y-s )
o el = R - R . T T = 5
fn(fﬁa) m n . 1/2(y sn) Rn(y sn)
Moreover ‘
-
f (y|a) 1 -
In : (?Ia) E—(ln|Rm| - 1n|R_|[)
1 -+ ! > -
. - §=(§ - Sm) R (y - Sm)
+2 G -30'RG -3
2 Y n nY n

e e A T U TR C i e - . . i s m o e e e
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and

+
) &._J/—1 Fmbdé] (+|)+
I(w,a,m,n Injua—— f (yla)dy
{n(§la} m
£ (yla) - |
- b4-
? 1n fn(y 2 (4-5)

where the expectation is taken under the assumption ;-~ N(é;,Rm).
Note that I(w,a,m,m) = 6.0 for m=1, . . .,L.

L

- -+
Lemma 4.1 If v ~ N{c,R) and R is positive definite, and A. is

&

symmetric, then

E{7'AY} = tr(AR"Y) + 2'al
Proof - By theorem 10.3.2 of Graybill (196%)

B3 - o)Ay - D}

i © '
. IrIP2 f G -G - He LG RGO

y -
(zﬂ)n/Z

tr (ART)

But
E((F - O'AG - O} = E{y'AY} - 2'a
The lemma follows immediately.

Q.E.D.

Applying the lemma to the expectations of the quadratic forms

in equation (4-4) we see:

-+ - ' e ) > _ -1, _
1. y o~ N(sm,Rm) S E{(y - sm) Rm(y - sm)‘] = tr(RmRm Y =21

)}

- <> -+ - R >
2, v - B - N(sm - sn,th =»E{(y - sn) Rn(y -8

_ -1 - . t A A
= tr(Ran 3+ (sm - sn) Rh(sm - sn)
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Thus
_1 . N _ L 1 p~ly
I{w,a,m,n) = 5 {anle lannD 7Tt 3 tr(Ran )
1 .= > - - 4
+ > (sm ~ Sn) Rn(sm - sn) (4-6)

' 1 -1 -1
I(w,a,m,n) + I{w,a,n,m) = =J + 0 E:r(Ran ) + t:r’(RmRr1 B

1 > > 1 e - . >y 5 >
4 > Es_m - _Sn) Rn(smf sn) + (sn - sm) Rm(sn - smI]

= -3+ [tr(R R_l} + tr (R R_I)J
2 n m m 1l

+1pi - ‘—sbn)'(Rm +RIGE -]
(4-7)

L n-1 |
I(w,a) = EE Ban[I(w,a,m,n) + I(w,a,n,m)j

. n=2 m=1

L n-1

D, {_J Pl [t (111 + e (RmR;1H

n=2 m=1

UG, 3 w6, - 2)

]

I
L
[un)

g
[as]
=1
+
o
-
[w]
=1
(w3
H
Y
BG)
=t
g8
=
=
et

n=2 m=1 n=]1 m#n
L n-1 -
1 - > 1 > >
+ 2 z :z : ene‘m(sm - Sn) (Rm * Rn) (Sm - Sn) (4-8)
‘n=2 m=1

The last form of this equation appears to be the most convenient for

computing purposes.
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4.3 Intuitive Analysis .

Looking at the computing form of equation (4-8) 1t can be
L n
seen that there are three terms. The first térm is ~-J g;% Eg%.emen.
The value of this term does not depend upon a and hence has no
effect upon.the choice of a. From this consideratio; we note that
computing the value of this terﬁ would not be beneficial if only
one more stage of experimentation is available.

The third term of the sum is a weighted sum of the quadratic

<o forms
-+ > > -
(sm - sn) (R.m + Rn)(sm - sn)
Thus this term is in effect a separating function in the sense that

these quadratic forms will be maximized when the pairs of expected

N . .
values of <y wunder the various hypotheses are as far apart as pos-

=

sible in comparison to the precisions of ;) If the precisions Rm
+ >
and Rn are large then s, and s, do not need to be far apart to
provide much information whereas if these precisions are small then
> -+ :
the expected values 5, and s, must be further apart to provide
the same information. The weighting factors are the products enem.
Thus when Bn and %m are both small, ann is very small and the
> -
information due to the separation of S, and Sh is discounted
somewhat. If en and Bm are large then the information due to
separation of E; and 3; is given more importance. Thus this
third term causes experiments to’ be chosen which separate the ex-

pected values of ? under the respective hypotheses which are still

in serious contention for being chosen.

13
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It is interesting to note that somé auvthors (Hunt and Reiner
(1965), e.g.) have proposed criteria for selection of experiments
involving only distances between expécted values. In a later paper,
Box and Hill (1967) proposed that the distances as such are not im-
portant, but the distances weighted by some function of the varia-
bility about the expected values are important. It is seen here

that the expected K-L information function does just that.

‘The second term in equation (4-8) is

L

1 -1l = ’
2 nZ=2>L eh‘}"[ Q emRm)Rn]' This can be thought of as a weighted

sum of ratios of precisions. If only one y wvalue is to be ob-
served, this component becomes
L E o R
mm
1 E : mFn
5 8 (4-9)
n .
n=}1
It would be interesting to see when this term is maximized. Upon
taking partial derivatives of equation (4-9), setting to zero, and
simplifying, one arrives at the following set of simultaneous non-

k=3
linear equations.

L 2 2
-~ R.
o {X L1 4 i=1 I
i Ri , < L[] I,Jl
k=1

It can be immediately seen that one solution to this system is

Rl = R2 =, . .= RL' This solution implies'that the experiments

should tend to give the same precision for the expected value of ;
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| under each hypothesis. This term is not considered any further
here. .

. o In summary, it can be seen that the expected K-L information
function in this case is basically a rathef simple separating func-—
tion. One would be hard pressed to construct a much simpler sepa-
rating function which has more intuitive appeal. If multivariatel
observations are permitted, then it might be possible to delete the

P

second term of equation (4-8) to save a good deal of computing..

a
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CHAPTER 5
THE SEQUENTIAL DECISION PROCEﬁUﬁE

Three components are required for a éequential édaptive de-
cision procedure; (1) a rule which determines if sampling should be
terminated or continued, 22) a rule which specifies the-experiment
to be performed given the current state of the system, and (3) a
"eorule which selects the model equation which will be claimed to be
true when sampling is terminated. The first part of this chapter
discusses the experiment selection rule énd tlie second sacfioh pre-

sents the stopping and model selection rules.

5.1 Experiment Selection Rule -

The procedure adopted for this dissertation is” the so-called
myopic.procedure. This rule simply chooses as the next experiment
that:onekwhich maximizes the anticipated K-L information for the
next stage only. =

We assume that an upper limit, JMAX’ to the number of ob-
servatibns is specified. This number may be infinite. An alloca-

tion of the observations to the stages of sampling is described by

=S
a JMAXXI vector mn, where n, gives the number of observations

'

at stage 1i. The question arises as to how the observations should

be allocated. That is, should 2ll J be taken at once, strictly

MAX
one-at-a—time, or in different sized groups. As the first step in

answering this, let Aj denote the set of experiments in A which

37
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specify that j observations should be taken. For any given state
' *
welk, let aj(w) denote the element of Aj such that
I{w,ag(w)] = sup I(w,aj)

a,ch,
J ]

Lemma 5.1 For any wefl, and 41,3 such that i » 4 we have

I[w,ai(w)} z‘I[w,a?(w)].

Proof: We introduce the following notation. Let yk(aZ), ¢
k=1, . . .,i denote the ;andom variables observed under a:(w)
and yk(aﬁ), k=1, . . .,j denote the random variables observed
under a;. Define ancother experiment ﬁieAi by choosing the first

%
j observations according to aj and the remaining i - j observa-

%
tions according to the last 1 - j of. as. This leads to the ran-

dom variables

* .
yk(aj k=1, P

* )
R k=3+1, ...,
Because I(w,a,m,n) is positive definite and is additive for inde-
pendent observations
: %
I(W,éi,m,n) Z_I(w,aj,m,n)
Thus
- 1 ~ -
I{w,a = @8 [I(w,ai,m,n)]e

*

3

|v

* T
gI[I(w,aj,m,n)]§'= I{w,a

But by definition I(w,aj) 3_I(w,éi) and hence
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N *
I(w,ai) i_I(W,aj) -

Q.E.D.

The lemma simply proves that an experiment witﬂ more observa-
tions will be expected to provide more information than oné with’
fewer observations. 1In determining an ailocation one ‘should also
consider the cost of experimenting. In particular, if we assume
that each observation has’a constant cost associated with it, then

it is reasonable to choose the experiment which maximizes

1
3 I(w,aj) j =1, . . "JMAX
. k-1
Thus prior to stage k let m = g;% n; and assume m < J .. The

optimal experiment is the element a*eA which for the current

state Vi1 vields

MAX MAX 1 Z
o “'I(wk_l,a)
j=1, .. .,JMAX ~ m aeAj q

If sampling has not been terminated by the rules developed in
Chapter 5.2, then we stop when Eni = JMAX and select the model

according to the rules in Chapter 5.2,

5.2 Stopping and Model Selection Rules

We now discuss the problems of determining which of the postu-
lated models is the true one and determining when the results of the
experiments are sufficiently informative to stop sampling and make
fhe choice.

Box and Hill (1967) éuggested that for thedir procedure, ex-

perimenting be terminated whenever one model is clearly superior to

<
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the others. This 1s obviocusly a reasonable statement but iF is in
need of formal definition before it can be used as a stopping and
selection rule. We propose genergl stopping and seléction rules
and a modified ﬁersion which might be used in ecertain instances 1in-
volving nested models.

(1) Stopping rule: Let Bm be some specified value

1/I. < 6 < 1.0. Let J, . denote the maximum number of cbserva-
m — MAX

tions permitted. Then terminate sampling whenever either
MAX-
{

{=1.L Hi} >0 oxr J observations have been taken, whichever
no_’

m MAX

occurs first.

{2) Model selection rule: Upon termination choose the

MAX
i=1,118 1

correct model to be Hj* where Gj* =

We now present a modified stopping and selection brocedure
for use with nested models which may be of some value when Bm- is

very near 1.0 and/or when J is relatively large. The reason

MAX

for presenting a modified procedure arises from the large sample

results of Chapter 3 and the Monte-Carlo results of Chapter 6.

First, if Hi* denotes the unknown true model, it is not known
whether ei* . > 1.0 or not. From the Monte-Carlo results it seems
b4 i

that the typical behavior of ei* for nested models 1s to fairly

»J
rapidly increase to something near 1.0 and then fluctuate, possibly
glowly approaching 1.0. Thus, if Bm is very near 1.0 it may be

that extremely large samples would be required. Thus we would like

to reduce the average sample size without seriously detracting from

the prebshility of choosing the correct model.
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‘To'intrbduce the modified procedure consider the following
: example: | | .

Hl: y = lel + e
Hz: ‘y =.le1 + 82x2 + €

If Hl is actually the true model, then the posterior distribution

of (B],Bz) under H, should approach a point distribution with

uElm 0 and ugé equal to the unknown value of the parameter. How-

]

ever, el i
: 1,

stant Yy is specified. Then after each stage of sampling, test if

‘ 2 2
-

If d <y then drop model 2 from contention and replace 61 by

may not .approach 1.0, Assume some small positive con-

Bl + 62. Then apply the previously described stopping and selection
rules. 1In this simple example, the dropping of model 2 would auto-
matically cause sampling to .be terminated. This would of course not
necessarily be true in more general situarions.

To generalize the procedure some additicnal notation and con-
cepts must be introduced. We use the symbol 2 to denote inclusion.
Thus Hi:: Hj means that the model of Hj is nested within the
model of H,. The set of models {Hi] is a partially ordered set
under the partial ordering relation"d. In the theory oflpartially
ordered éets a chain is defined to be a partially ordered set such
that for ;ny two elements (Hl and Hy sag} of the set either

Hl:D H2 or H2:§ Hl. For the purposes of this dissertation we de—.

fine a string of elements from the partially ordered set as a sub-
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set of elements such that the subset forms a chain., A maximal
string is constructed from any string by adding all the elementé
of {Hi} to the string which can be added without causing the en-
larged set to lose the property of being a cha.in.

To formulate the .modified stopping and seléction procedure
we first construct all of the maximal strings that can be con- |
st_ructed from _the set {Hi} and order the eléments of the strings
usingﬂ the relation 3.

5 and the five models are as

For example, suppose”’ L

specified below:

Model : Model
number equation
1 -y=80+ﬁ1xl+er
2 y = BO + 83):3 + €
3 y = BO+81X1+82}F2+,E
4 y=80+_81x1+53x3+5

5 y =B, +

0 lel + 82x2 + 83}:3 + e

The maximal strings are easily verified as being
(HlC, H3£ H5)
(HlC H4 o HS) |

In each of these strings the maximal element is H5.

The modified procedure consists of computing for the first
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maximal string‘the squared distance of the posterior mean vector of
ghe maximal element from the posterior mean vector of the submaximal
or next largest submedel gf the string. If thig quantity 1is less
than some prespecified value vy, the maximal ﬁodel is dropped From
the set'{Hi}g The posterior probability of the maximal element is
added to the probability of the next element of the string until
either only one model rem;ins or there is no need to drdp models.
Before considering tﬁe next maximal string, all models which have

. been droppea must also be deleted from the remaining strings. The
above procedure is then repeatedffor each maximal string in turn.

" Once this has been completed and all models which can be
dropped because they reduce to models with fewer parameters have
been dropped, the same stopping and selection rules proposed for the
non-nested case are applied. : :

Note: The procedure just described is not necessarily tﬁe
best or Qﬁe most natural one to use for combining medels. For ex-
amplé, an alternative to the distance of the means might be to com-
bine models when the preobability distribution of the maximal element
is sufficiently concentrated about the mean of the submaximal ele-~
ment. This would have the advantage of using the information con-

tained in the precisions of the distributions also.



CHAPTER 6
COMPUTER SIMULATICN RESULTé
‘'The purpose of this chapter is to report and diécuss the re-
sults of a number of Monte-Carlo simulation studies of the sequen-
tial procedure proposed i; Chapter 5. The chapter is divided into
four major sections. The first section describes the general simu-
.lation procedure and presents a brief description of the algorithm
used. A computer program based on this algorithm is described in
further detail in appendix A. The second section prgsents.and dis-
cusses the results of a number of simulations performed to gain fur-
ther informatiqn about the large sample behavior first discussed in
Chapter 3. The primary concern is with the posterior probabilities
gnd the posterior means of the parameter distributions after a large
number of observations. The third section presents and discusses
the results of some simulation studies .0of the proposed sequential
procedure when ﬁhe number of observations is limited and when the
stopping rule of Chapter 5 is used. The primary concern is with
the probability of the procedure actually selecting the correct
model and the average sample size required until termination. The
last section of the chapter presents an everall discussion of the

results.

6.1 General Simulation Procedure

The sequential procedure proposed in Chapter 5 consisted of

c

44
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(1) an experiment termination rule, (2) an experiment selection

rule, and (3) a model selection rule. Because of the mathematical

complexity of the posterior distributions involved it was not

feasible to analytically examine how well these rules work. The

general procedure by which the Mente Carlo simulation“technique

was used to study performance is outlined in the following algorithm.

1, Input:
¥2,0

)
qE,O

£,0

=

the prior means of the parameters of the models

the prior precision matrices of the parameters
of the models

the prior probabilities of the models being
correct

the number of simulations

stopping probability

maximum number of observations

the model chosen fo generate the observed variable

values of the parameters of the true model

6. <« 3 +1

7. Determine optimal acA as described in Chapter 4. Denote

% : -
as a and let Ma* denote design matrix for model i

when a is chosen. (All simulations in this dissertation

3



10.

11.

12,

i3.
14.
15,
16.
17.

18.
19,

A 20.

A6

consider strictly one-at-a-time sampling for simplicity.)

e Mo
. - R
yj aku

Generate a pseudo-random observation Ej from & N(Q,T)
distribution. (Described in detail in.appendix A)

Ly, e
S IRRE B

) >
For &L =1, . . .,L compute eg’j, wﬂ,j’ and pi,j from
° -+ ; ,
yj and Gk,j—l’ wl,j-l’ and hk,j—l as described in
Chapter 3. ‘
Find k such that 8 = MAX{®,K .}
k!j i l’J
. » i .
If 3 E-JMAX or Bk,j __em go to l4. Otherw1se-go to 6
N, « M, +1
J ]

If k= 1%; PCS « PCS + 1

n<n-+1l
If n>N go to 18. Otherwise go to 5.

PCS + PCS/N

- l JMAX —
ASN +(Z X iNj)/N
o\

Stop

Upon stopping, the value of PCS is rhe observed probability

of correctly choosing i  as the true model for the prior distribu-

tions specified when in fact the true value of the parameters is

given by

%
MW . ASN gives the average sample number upon termination.

The above algorithm can be easily used for either large sample

or small sample studies. For example, for large sample studies set

° = 1.0,

n

N=1, and J to some large number, say 100 or 500,

MAX
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For small sample studies set Bm < 1.0, J to some small number,

MAX

and N to some largef number, say 500 or 1000.

6.2 Large Sample Studies

In this secticn we examine the large sample properties of the
posterior probabilities of the models and the posterior means of the
parameter distributions. Three sets of problems are studied. First,
two sets of nested polynomial models are studied. The posterior
probabilities of each model, the posterioxr means of the parameter
distributions, and the proportion of times each of the allowable
values of the independent variable is.chosen as optimal are tabu-
lated for simulations of 100 énd 500 cobservations. Second, one set
of nested factorial models is studied for three differenprprior dis-
tributicons® on the models. And third, one set of non-nested fac-
torial models is simulated.  TFor the last two, the posterior proba-
bilities and means of the parameter distribﬁtions are tabulated,

6.2.1 Polynomial Model Studies
Two sets of nested polynomial models are considered which

have the following general form:
Hy: y = Z‘, 3jx3 4 g, &= 1,L

Two values of L are studied, and for each of these choices, two

choices of H.% are made. The values of 71, 8 , and ¥ are
i £,0 &

,0

specified as
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[l =

b0 =

for all.simulationsu The values gf jﬁ,o are tabulated at the tops
"of figures 1 and 2 and the resulting functions are graphed on the
interval x [-1,+1] at the bottoms of the respective figures. For
L= a,lthe two choices of Hi* are H ‘and H,. TFor L = 6, the

2 3

two choices of Hi* are H3 and Hsc For simplicity, the actual

values of the parameters used to generate the data were chosen to
-
be My 0 for each of the four cases.
3
For these simulations, the definition of A was arbitrarily

taken to be
where -

Note that sampling is strictly one cobservation per stage.
The simulation results are summarized in table 1 and given in

further detail in tables 2 through 9. For each choice of L and
% _ '
i , five simulations of 100 observations and five simulations of

500 observations were performed. For these simulations, the sample

paths of the were printed out and the choice of a(l) at each

® 00

stage were printed. The posterior means of the parameter distribu-
tiohs were printed only after the last stage. Tables 2, 4, 6, and 8
give the posterior probabilities after 100 observations and the

first 100 out of 500 observations. The proportions P; of using

(i <
a ) are also givan. Table

3, 5, 7, and 9 give the same informa-

(i
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|'

0 | 1.0

Figure 1. - Tabulations of the prior means of the parameters
and graphs of the resulting functions over the interval
-1, +1} for farge sample polynomial study one.
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ﬁ_(05> 5 o= | 0
' o
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gqold 11 | I N N
10 -8 -6 -4 -2 0 .2 .4 .6 .8 LO

Figure 2. - Tabulations of the prior means.of the param-
eters and graphs of the resulting functions over the
interval [~1, +1| for large sample polynomial study

tvro,
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tion for the 500 cbservation simulatibns.

Figures 3 and 4 present typical sample paths for the posterior
probability of the correct model. In figure 3, the value of 82,j
_is plotted for the first 950 observations of the third simulation
for L =4 and i* = 2, In figure 4, the vaiue of GB,j is
plotted for the first 250 qbservations of the first simulation for
L=2¢& and 1 = 3. These figures i{llustrate the typical behavior
of Bi*,j' It fairly rapidly rises to a value of about 0.85 tp
0.95 and then slowly and ;;ratically oscillates. This is suspected
" to be because of the nested nature of the model equations. It was
because of thié behavior.that the modified selectioﬁ‘rule of
Chapter 5 was first introduced. Consideration of the posterior
means of the parameter distributions will also pfovide some infor-
mation concerning this modified rule.

For L = 4, congideration of tables 2, 3, 4, and 5 show that

i . p e I

> i , L . ox
-] for 1 > i . This is in accord

as J increases, ui,j -+

. ' _ *
with the conclusions of Chapter 3. For L =6 and 1 =3 we
~again see the same close agreement with'Chapter 3 as evidenced by
' %
tables 6 and 7. However, for 1 = 5, an entirely different situa~

tion arises. To understand this we should npote that the model used

to generate the sequential observations is

y = 0.5 x + 0.1 x4 + e . _ .

< .

This functiom can be very closély approxiﬁated by a model of the

form
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Figure 3. - The sample path of 8, ;"for L=4, i = 2 for the lirst 250 observalions of simulation ng, 3. A well be-

haved path for nested models.

| I [ t I I t i t | l |
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Figure 4. - The sample path of 83‘; for L=4, i* =3 for the first 250 observations of simulation na. 1. A typical

path for nested models,
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over the range of x values considered. And in fact we note that
there is a marked preference for choosing the lower degree model as

indicated by 8 becoming close to 1.0. 1t is also interesting

| 3,3
. to note the behavior of ﬁ: . for i > 3. We do not see that
3
N A |
My > 6’ as might be expected when Hy 1is so close to being
R y

4
true, except for the case of i = 4. For Wy we note that the

average posterior mean of the ceoefficient of x3 iz quite close to
zero and the sum of the posterior means of the coefficients of x
and 'x4 is ﬁuité close to 0.1. For ;g we‘note fhat the sums of
the posterior mégns of ‘the coefficients of x2 and x4 “is close

to 0.1 and the sum of the posterior means of.the coefficients of x,
x3, and xf is close to OTSq From these simulation studies it is
not cleer whether this behgvior is simply because 500 observations
is not . a sufficiéntly large number to discriminate well between such
nearly equivalent functions or if this behavior will persist no
matter how large the number of observations:

We now turn to a discussion of the observed proportions of
times the a(ib were chosen as the optimal experiments. From
tables 2 and 3 which present the results of L = 4 and i* = 2 ye
see that the largest pi are for pd, Pss Pg» and Pg‘ These cor-
respénd to x = -1, x = -1/9, x = +1/9, and x = +1. Because of
the discretization of the interval (-1,+1) we might assume that the
asymptotically mbst informative experiments were x = -1, x = 0,
and x = +1. From tables 4 and 5 we see the largest P; are pg,

Pys Py and Pg corresponding to x = -1, x = -5/9, x = +5/9, and
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X = +1. The relationship of fhese proportions and x 'po%qts to the
experimental designs which are optimal from other considerations
might be interesting. For example, Kiefer and Wolfo%itz {1959) con-
sider optiﬁal &esigns for regression problems of a somewhat differ-
ent nature., The comparison of the current results with such other
works is-currently being pursued but will‘nét be reported in this
dissertation. °
7 6.2.2 Nested Factorial Models

A second set of simulation studies were made using the follow-

ing models

H:'y=so+e ' .
HZ? y = BO + lel + e

H3: y = 80 + 81Xl + 82x2 + e 2

H4: y = 80 + lel + 62x2 +;83xlx2 + ¢
with v =2.0, ¥ = I, and i* = 3, The prior means E were
. £,0 £,0

chosen as )

1

ul’o = (0)

>

U2,D = (031)

1 ey

1-'3’0 = (0,1,-1) =(U )

>y )

]J4,0 = (0,1,—1,0)

Three sets of 82 p were chosen:
. ]



E :

L. 8 o= 0.1 e
92’0 = 0,2
o, 4 = 0.3
0,0 = 0:4 | o
2.0, 4=0.25  2=1,
3.6y o= 0
0, o = 0-3
93’0 = 0.2
94’0 = 0.1 ﬂ

=

The experiment space A 1is defined as A-='{(xl,x2): Xy = 1}

' Note that experimenting is strictly one-at-a-time. “The sequential

selection procedure of Chapter 5 was used for five simulations of
500 observations each. The results are presented in table 10. We
note . that the posterior values are again in close agreement with
Chapter 3 and the results of the polynomial models. There does not
seem to be a pronounced effect upon the posterior probabilities of
the models from changing the prior distribution although there does
appear to be slightly higher posterior values of 83,500 when the
Bégo distribution is skewed towarﬁ,the lower values. A possible
explanation for this is‘that when this distribution is skewed toward

the high values, the procedure is choosing experiments primavily to

discriminate between H3 and H4. Since H3 ig true, the model of
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H4 will rapidly become close to that of Hy and the fesulting‘ex—
periments will not be very informative. When the prior probabili-
ties are larger for the lower degree polynomials, however, the pro-
cedure chooses experiments primarily to discriminate between H

1

and H2' These experimenté should then more rapidly tend to prove

Hl and H2 to be inadequate.

6.2.3 Non-Nested Factorial Models

&

In this study, the follewing non-nested models were studfed,

o

Hl: y = BO + lel + BZXZ + c
HZ: y = B0 + lel + B3x3 + €
H3: y = 80 + 82x2 + B L3 + €

3

The wvalues of the parameters are chosen as

iF =
L 4 . "
- (1,1,1
Yo"l
- 1
90,073
T = 0.0F,1,100

T* = (1,1,1)

The experiment space A was assumed to allow only one observation
at a time with x; = tl. Five simulations were performed for each

value of 1. For v = 100 it took only three observations for 83

to become 1.0 (within the accuracy of the computer). For 1 = 1.0
the number of observations required for the final posterior proba-

bilities to reach 1.0 are tabulated in table 11. For .= 0.01,
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1000 observations were taken and the resulting posterior probabili-
ties are given in table 11. Again the resu;éé'are in general agree-
ment with Chapter 3.

6.§ Small Sample Performance Studies

In this section we ezamine the performance of the proposed se-
quential procedure as measured by the PCS and ASN values. First,
two studies are presented of the problem of discriminating among the

a

three models

' . = +
Hl. ¥ lel F €
Byt y=8x,+¢
H3: y = lel + Bzle + e

The first study assumes Hq is true and the second study assumes

H2 is true. The experiment space A 1is defined as

A =‘{(xl,x2): X; = i1, pne—at—a—time sampling}

Then we consider the problem of choosing among the four nested
models.

H.: y= BO'; £

H2: y o= BO + lel + ¢
H3: vy = Bo + lel + 82x2'+ £
qu y = BO + Slxl + 82x2_+ BBXle + €

where A is as in the first two studies.
The primary reasons for concentrating on these simple models

are that the parameter spaces are of a low enough dimension that
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they can be viéualized and they are small enough that extensive
simulation studies would not require inordinate amounts of computer
time. The fact that the parameter spaces can be vi;ualized allows
the effect of varying prior means upcn PCS and ASN to be more Eaéily
grasped. Note that the modified stopping and selection rule was
not used.
6n3,i'Stud} One - H3 Assumed True
We study discriminating among
o 7 ‘H oy = lel + €

9t ¥ = Bgx, toe

H3: y ='lel + 62x2 + e
A ='{(X1,X2)= x, = #1; one-at-a-time sampling}
b
‘whe:e. >
- <1
“'9,,0 =1 en,o T3
> > ) '
N 111,0 - (1'0) U2,0 = (1'0)
and )
Sk 1.0
b o=
1.0

Then a.number of simulation experiments were performed for
.each combination of:

: 0.50,.1.0, 2.0

-
]

0.70, 0.80, 0.90

(-]
1l

e
f

8, 16
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¥ ¥ 1

‘ 0.0\ fo0.50% f1.0% [L.5 .
- _ .
3,0 “1o.0f to.s0] ti.0f %1.5

The experiments for J” x = 8 used 1500 simulations and for

Jyux = 16 ‘used 1000 simulations.

The choice of prior means deserves some comment. Figure 5
i1llustrates the points in (81,82) coordinate space corresponding to
o . -+ . v
the prior means. The points corresponding to ¥1 0 and Hy o are
3 L

%

as close to U as possible since is restricted to the hori-

H1,0

+
zontal axis and uz 0 to the vertical. The four choices for §3 0
3 b

o

%
then span a range about ﬁr and hence the resulting PCS and ASN
values will indicate the importance of mis-specified prior means.

Tables 12 and 13 present the observed PCS and ASN values for

. >
the combinations of em, T, and My g° These results are also
3
plotted as parametric surfaces in figures 6 through 9.
In general, the results are about what should be expected.
The PCS increases with T and ASN decreases with 1. PCS increases
- % : A
as u3 0 gets closer to Y . We also note that in most cases, PCS
) =
. -
increases with em for fixed 1 and Vg ge There is, however, a
3
distinct dropping off of PCS with em along the peaks of the sur-

faces. There does not seem to be any ready explanation for this.
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Figure 6. - Probability of correct selection (PCS) as a function of §, 1,
Hy o for Jp o= 8 and Hy true. Small sample performance simula-
tion experiment one,
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Figure 7. - Average sample number (ASN) as a function of 8, T,
i3 g for Jpax = 8 and Hs true. Small sample performance
simulation experiment one.
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Flgure 8, - Probability of correct selection {PCS} as a function of Bm. T, 33
for Joax = 16 and Hy true. Small sample performance simulation exper’i-

ment one.
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Figure 9. - Average sample number (ASN) as a function of 8, T,

i3 g for Jpax = 16 and Hs true. Small sample performance

simulation experiment one,
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6.3.2 H2 Aésumed True

A much less extensive study of this case was made than the

case of H3 assumed true. The same model equations were postulated

and we assume

Yo0°1
£=1, .. .,L

6, =%

£,0 3

'_)'7_

® 111,0 = (0‘0)
2> t
u3,0 = (G.0, 1.0)

W= (1.0)

The walues of 1, Bm, and 32 0 which were simulated are tabu-
3
lated in table 14 along with the simulation results. Figure 10

illustrates the prior means. 0Only one level of J (=8) was

MAX
considered. Also, only 500 simulations were performed for each of
these cases. The PCS results are alse graphed as a parametric sur-

face in figure 11. The results are generally the same as for H3

true.
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Figure 10. - lllustration of prior means for small
sample performance simulation experiment two,
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6.3.3 A Four HMedel Problem
In this section we study the ability of thm.sequential pro-
cedure to choose the correct model from the follewing set aof com-
pletely nested wodel equaticns.

Byt oy = By +e

HZ: y = BO + lel + €
Hyt o yo= By + Byxg + Byxp v €
Byt ¥ = BO + lel + Box, B3X1X2 + e

The prior distributions are defined by

o
0,0 7
Ye0°1T .
e . 0 ‘
Flo7 @y 0" (g)’ o
And
L o\ 1 (o (o
by o= 110 {0.5], [0.5), [0
: 1) o ) o \0.5

The equation used to generate the observations was that of H3 #ith

values of the parameters given by

->% 0
uo= 1
-1

The value of 7 wused was 1.0.
For fixed values of 83, the values of the prior parameter

means for Hl and H2 and the four prior means for H3 can be

plotted in 3-space as in figure 12. For each of the four choices

>
of u3’0, three values of em (=0.7, 0.8, 0.9) for JMAX = 8 were

used and the resulting PCS and ASN values for the 12 combinations

O T A L A -4 L2 ot o T S . [ Al
Y . - -

cases, 1000 simulations of the procedure were performed.

L e e
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B3 = constant

Figure 12. - [llustration of the prior means when B4 is held
constant. Small sample performance simulation experiment

three.
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... .Figure 13, - Probability of correct selection (PCS) as
a function of 8, and ;]'3.0 for Jmax= 8 and Hs
true. Small sample performance simulation experi-
ment three.
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6.4 Discussion of Results

We now make some general observations ﬁoncernlng the results
of the simulation experiments.

First, consider the large sample results. In the context of
the fact that sequential procedures are primarily developed 1n the
hope that reliable decisions can be made with smail gamples rather
than large samples, these results are ndt of primary importance. It
is interesting and informative to know, however, that the procedures
are consistent. Since the study of limiting posterior distributions
resulting from sequentially chosen experiments is known to be an
extremely difficult and delicate problem, simulation experiments may
be helpful by indicating to researchers what large sample behavior
is likely to be true. In the problems studied in this paper it
séEms quite likely that when non-nested models.are encountered, the
posterior probability of the true hypothesis has a limiting value
of unity. It also seems most likely that the limiting posterior
mean of the true h&pothesis does indeed equal the values of the un-
known parameters generating the data.

When nested models are encountered, however, the results are
not as enlightening. It appears that if the poéterior probability
of the correct hypothesis does not achieve a limit of unity, it at
least attains a large value and then randomly fluctuates about that
value. There is iIndication that the conjecture of Box and Hill

that for these nested models there is a2 distinct preference by the
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sequential procedure to choose the model with the smaller number of

.parameters as true. For instance, the polynomial study L = 6,

i* = 5 indicates that if a model with more parameters is true

but can be approximated closely by one with fewexr parameters,
there is a preference for the smaller model.

In examining the small sample performance simulation experi-
ments,nit is seen that PCS drops off féirly rapidly as the distance
of the prior mean of the correct model from the true values of the

parameters increases. This supports the conjecture of Chernoff and

Meeter et al. that there may often be "initfal bungling." It should

~ be noted, however, that in all cases studied, the prior means of the

competing models were all get to be as close to the true model

parameter values as could be done. Thus, in a séﬁse, these experi-
ments can be considered to be presenting the most unfavorable situa-
tion possible to the sequentlal procedure, In actual application it

might be more reasonable to assume that the prior distributions of

. all the models are mis-specified to the same extent. This problem

of "initial bungling" should also indicate that the statistician
should have the prior precisilon matrices of the parameter distribu-
tions be as vague as the prior information permits, o

One approach studied by‘Kiefer and Sacks (1963) was to plaﬁ
small initial experiments as a basis for gaining information to plan
a large second experiment. An alternative not studied in this dié—

sertation, but which seems worthy of investigation, would be to set
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a lower limit, say JMIN’ as the minimum number of obgervations
taken before a stopping rule is applied. The sequential procedure

-

would use the same rule as developed for selection of experiments

but large posterior probabilities on the models would be ignored

until a sufficient number of observations are taken to avoid the

Lad

consequences of initial bungling. This also makeé sense from the
point of view of obtaining parameter estimates. Surely an experi-
menter would not be content to terminate sampling with two or three
observations even if the resultiné probabilities are overwhelmingly
in favor of one hypothesis unless he had extremely good prior infor-
mation, | ) .
The last topic to discuss is the modified stopping and .selec~
tion procedure introduced in Chapter 5. This was pot:applied to any
" of the simulation experiments performed in this dissertation. The
large sample simulation results indicate that when b, and/or Jvax
are large, then this modified procedure may be of value. For the

problems considered here, it is seen that even for nested models,

the unmodified procedure performs quite well when JMAX is small.



CHAPTER 7
EXAMPLE OF APPLICATION

This chapter first presents a general outline of the situa-
tions in which the results of this paper may be applied. Following
this an example from the literature is presented. The purpose of
this example.is to illustrate how the information available from
previous experimentation can be translated to the information re-
quired for the application of the seqd;ntial procedure developed

herein.

A Bayesian framework is used in this paper because in a great
many appli;ations there does exist some prior information which can
be incerporated. The Bayesian approach to statistical inference is
the most natural and satisfying method of incorporating prior knowl-
edge, This prior knowledge may arise in several ways,

For example, when expensive or large experiments are contem-—
plated, there is often available data from pilot studies,:the liter-
ature of the field, or poorly designed prior experiments. Typi~-
cally, some type of regresgion analysis is performed on this data
but there is so little data that practically no conclusions caﬁ be
drawn, only recommendations for further experimentarion. The re-
sulting equations, however, provide a very cenvenient starting peint

for the application of Bayesian methods.

In other situations, an experimenter has a great deal of ex-
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perience in experiments that are similar and involve factors with
which he has some previous experience. In these cases it may be
safe to extrapolate his acquired knowledge from the similar but
differant experiments to the current experiment. If so, this may
indicate some characteristics of the model equation.

A third possibility might arise for example in the carrying
over of laboratory results to a preducticn process or out-of-
laboratory process. In the laboratory greater control can be
exerted on many variables and typically only a small number of
variables may belinvestigatedo Often one or moare mechanistie models
are available. When the process is taken out of the laboratory,
there will be less control over other vafiagles and they must be
accountednfor_by adding them to the model. Thus the experimenter
is faced with the situation of having a partly mechanistic model
and -a partly empirical model. . If the mechanistic model is suffi-
ciently smooth in the region of interest, factorial or polynomial
models cén be applied in these cases and prior information might
indicate which ipteractions or terms are most likeiy to exist.

The example we consider is studied in Lloyd and Lipow (1962)
énd Draper and Smith (1966). 1In these books the data presented in
table 16 is used to illustrate some topic; in the design of experi-
ments an& multiple linear regression analysis. The dependent vari-
able vy 1is the chamber pressufe in rocket engines put on test.

The four controlled variables are
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a

z; = temperature of cycle (starting)
z, = vibration 1evel°

2y = shock by dropping (temperature)
z, = static fire temperature

We first postulate the model equation given by equation (7-1).
=B+ Bz, + B 22 + Bz, + B 22 + Bz, + 8 22 4+ Bz, + R z_z
Y5 Po T P1P1 T PPy T Bafp T BuRp T BgZy Sy 7 Byz, 4 Bg2i2,

+ B + B + B

4]

st Bgzyzg B2z, T OByyzozg t Byazgz, + B gz, + (-1

The results of a multiple linear regression analysis of the model
are gummarized in table 17. The terms of the model are crdered in
table 17 in décreasing order of descriptive significance level.

The experiment is highly saturated with respect to eguarion (7-1) in
the semse that 14 parameters are estimated from the data from

18 distinct combinations of levels of the independent variables.
There are also quite a few high correlations among the terms of
equation (7-1) and hence high corfelations among the estimated pa-
rameters, Thezpower of the resulting t-tests may be somewhat low
under these circumstances.. From examination of the various descrip-
tive significance levels, the model equations tabulated in table 18a
can be considered reasonable. The prior means of the distributions
‘are also given in table 18b. The prior precision matrices may be
derived by multiplying 1t times the submatrices of order 3, 6,9,
and 15 of ‘the matrix given in table 18¢. How. these prior distribu-

tions were determined is now described.

In meltiple linear ragressizn, under the usual normalicy

B i Bt oot = SIS - - e ——yar P - n — S

r——— e
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assumptions, the parameter estimates from the model
-+ >
y = MB + ¢

are given by

2= oy . ,
and we know

g - w{§, &5 ')

a

Thus, for the first three models of table 18, the prior means and

-~

precision matrices would reasonably be the %‘ and EE-M‘M derived
a

«by least squares analysis using the appropriate subset of data from
table 16. This is how the values cof E y ¥ for & =1,2,3
%,0 £,0 :

were derived. For £ = 4 and the data of tzble 16, the full equa-

tion is not estimable because there are not three levelg of z, to
estimate a coefficient of zie Thus least squares estimates were

computed and M'M computed for the first 14 terms of model 4, Then

an essentially diffuse prior was specified with respect to B by

14

setting the prior mean to zero and adding the last row of the matrix
in table 18c to M'M. The diagonal term was arbitrarily chosen to
make the matrix nonsingular yet not comparable to any of the other
diagonal elements in magnitude.

To complete the information required, T must be specified and

BZ 0 chosen. From the data of table 17 an unbiased estimate of 02
3>

is 1.85 as computed from the replicated points. Thus we may use

1

. o T= 71 g8E " 0.541. To determine the 82,0 it will be helpful to

examine the F-ratios for lack-of-fit for the first three models in

S T T T T T T = T o -— T G d - - -
_____ T e T T T T T T PR AT T Ty T T T T T T T T e T T
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table 18. These are F=5.295, F=2.038, and F = 1.871. These
statistics are significantly large at about the 0.90, 0.80, and 0.75
levels, respectively. Based upon this, the follewing values of

8 seem reasonable

,0
8,0 = 0.10
95,0 =0:30
83,0 = 0.30
: ! = 0.30

4,0
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APPENDIX A
COMPUTER PROGRAM FOR STIMULATION STUDIES

The general flow of operations and computations performed by
the program is described by the algorithm given in Chapter 6.1. The
input required te perform these computations is first described.
How thesg computations are achieved is describad briefly by giviﬂg
the major functions of the.subprograms conctituting the complete
program. A compiete FORTRAN listing £s given.

| INPUT

The program, as pfesented here, can only accommodate poly-
nomial models over the interval [-1,+1] and two-level factorial
models. This can be changed by writing one new subroutine (MFORM)
to handle more general models. The program identifies thé param-—
eters by their integer subscripts and computes the Xij values for
the M-matyrices according to the following convention:

1. For ﬁolynomial models, the subscript 1 indicates the’
pafameter which is the coefficient of xic

2. For factorial models, the coefficients are assumed ordered
in the standard order according to the descriprion in Sidik and
Holms (1971). The treatment combinations are alsoc assumed to:bg in
standard order and the independent wvariable values are consrtructed
as described in Sidik and Holms (1971). |

3. The order of the models zg specified for inpur are written
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such that the parameter sﬁbscripts are in increasing order.
The specific input cards are now described below and illus-
trated by the Input for a case run in Chapter 6.3.1. The problem

input is specified by the models and parameter values:

Hl: y = lel + €
HZ: ¥y =_62x2 + €
H3: y = lel + 82x2_+ €
?250 = T Bm f QD7O
1 r=1,2,3
62,0 =3 T = 0.5
JMAK =8 .

1500 simulations

-
.-pl,o (1‘0)

(1.0)

I

5
¥2,0
> _ 0.5 +% (1.0
H3,0 ¥ \0.5 TR0
Start random number generator with 041 574 501 221.
1. IDENTIFICATIOR (13A6)
One card for Hollerith input description of the problem.
2. NAMELIST INPUT (SNAML)
Most of the control parameters are included in a NAMELIST
input set. The list of parameters and their purpose fol-

lows:

]



NFAC

NHYP
NSYM
MXTRTS
NTREND

LEVOUT

LTRUE
TAU
CSTOP

T™aXx

IFSTRT

RESTRT

82

For factorial problems, this‘supplies the number
of factors. For polynomial problems, this wari-
able need hot‘gé supplied. |

Number of hypothésized models.

Number of simulations to run.

JMAX

Not used for this report. Set to zero.

An output control variable. Certain basicoout*
put is®automatically printed. Extra intermedi-
ate output can be printed bg setting LEVOUT to
an integer between 1 and 7. For performance
studies set to 0. For large sample runs set to
2. TFor debugging sét to 7.

Supplies-.i*, the correct model subscript.

T

%m

An upper limit on execution time. If this limit
is exceeded, the program dumﬁs for a restart,
Seﬁ T -for supplied starting value for random
number sequence. Set F if:sequence is to
start with initialization value. (See descrip-
tion of subroutines RAND and SAND for further
iﬁformatiou.) - |

Is this pr;blem a restart of a case terminated

by exceeded time? T or F.
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POLY T implies polynﬁmial ﬁodel. F implies
factorial model
NX For polynomial models, the x space is re~
stricted to the interval -1 to +l. X .speci—
fies the number of points used to discretize
the interval into equal increments.
3. FORMAT FOR PRECISION MATRICES (13A6, A2)
For each set of model equations supply one set of 4A, 4B,
4C, 4D, and 4E.
4A. NUMBER OF PARAMETERS IN MODEL, PRICR PROBABILITY QF
MODEL (I6, F12.6)
_ 4B. PARAMETER SUBSCRIPTS (1316)
4C. PRIOR MEANS (12F6.0)
4D. TRUE VALUE OF PARAMETERS (12F6.0).
This card should be supplied only for the set corresponding
to the correct model.
LE. PRIOR PRECISION MATRIX
Only the upper triaagular half of ¥ is specified with the
order being

wll’ ?12, ?22, ?13, etc.

5. STARTING VALUE FOR PSEUDO~-RANDOM SEQUENCE (012)
A graphical illustration of a data deck is given in figure Al

and a FORTRAN sheet giving the sample inpuhvis given in table Al,
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NILE

TABLE Al

PROJECT HUMBER

AKALTST

THEET

STATEMENT
NUHBLR

FORTRAN STATEMENT

IDENTIFICATION

[ Ta orap oo

1358 T

1920 2 22 73 2e175 28 27 28 2% )

3137 33 34 3% 35(3T 3B 040 & h2{L5 4L L5 48 LT 4B

W? 50 b 52 53 34

55 3& 5T 5B 59 40

a
61 82 A d4 A5 65[AT &8 6% 1O T1 22

TZ1 TSI 9 0

&
SMALIL SAMP
L

LE PERFORMANCE STUDY FOR THREE MODELS i
$NAM NFAC=2, NHYP=3, ' NSYM=1500,
-1 NXTRTSF 8, NTREND=0, LEVOUT=0,
. lLTRUESS, TAU=. 5|, o _lemors. 70,
TMAX=10.0, _IESTRI=T, RESTRI=F, X
POLYZH, o NX=0 3 )
(3F1.[0) e ;‘
1.33333333
: . iy .
1.0 ¢ . o,
1, — e e O U R
1. 33533333 L .
...4“_,....4__.,72 Py smad s
b '.O [P SR —
‘ 2. 333333353
| 1 RN,
IR N1 (2 RO ST, EY I
1101

041574501221

TEy e sfelr e e ez 2ol

13 20 20 27 22 2u25 26 271 8 29 30

H 2T 33 56 35 J4AT IR ST LD &) 4243 kA LS LA LT LB

87 B8 89 10 N1z

% 30 51 52 33 54055 56 57 58 59 00}05 62 8344 43 A4

IARURERERIECFLN ]

NASA-C-B34 [REV. 9=14-5%1

LERA R ]
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Starling value for random
sequence (012}

. . . .
Prior precision matrix .
of parameters
Triie values of parameters
of correct model {12F6. 0)
Prior means of paramelers
ONE SET FOR (zré. 0 -
EACH MODEL < Parameler subscripts
(1316)

EQUATION

Number of Prior
parameters probabilily -
(16} (F12.6)

format for precision
matrices {13A6, A2}

NAMELIST data

{dentification {1346) °

A -This card is optional and its presence depends upon NANMELEST data,
B - Supplied only for true model.

Figure A-1. - Graphical illustration of card input for simulation program.
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SUBPROGRAMS AND THEIR MAJOR TFUNCTIONS

1. SEQDES. This is the main program. It reads the input
cards, exercises general control over thé other subroutines. It
also outputs the final results.

2. ACOMB.‘ Called once by SEQDES at the beginning of each
case. This subroutine scans the lists of parameter subscripts for
each model and constructs from them a new listc of subscripts in
ascend}ﬁg order which contains the parameters appearing in at least
one model. ’

3. SVSIRT (GTISTRT). A double entry subprogram, The entry
SVSTRT is used once a* the beginning of each case to save the prior
prebabilities, means, énd precision matri;esa Then after eéch sim-
ulation, entry GTSTRT is used to re-inictialize the working proba-
bility, mean, and precision vectors to the original values.

4. MFORM. There are two versions, MFORMX and MPOLY. The
first is for factorial runs and the seccnd for pelynomial models.
These subroutines construct the M-matrices regquired for each model
when given the experiment cholee (a level of % for polynonials,

a treatment combination for factorials). It is called by INFX
and YGEN.

5. INFX (UPDATE). Entry INFX accepts the current state of
sampling as defined by {Bz,j, ﬁ@,j’ Tg,j; 2 = 1,L} and dertermines
the expected K-L Information for a specified. experiment. Repeated

calls then are made by SEQDES to determine the optimal experiment.

- e e I P e e . - .
Lilkl Y vIibnil iz caided DY faba alil acliopls clie v L=lle ¢ cuew vaihes
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and an observed random response to compute the posterior distribu-

.

tions.

6. RANDUM. Called once for each random observaﬁion éakén._
Generates a random observation, &, from N{(O,r}.

7. YGEN. Called once for each random observation. This rou-
tine accepts the N{0Q,t) variate generated by RANDUM and calls MFORM
to compute- M; where M is the design matrix appropriace fof the
correct model and the experiment chosen as optimal. Then

s
y=Mpg + &

is computed. After generating vy, posterior values for 8)2 are
computed. Sampling for that simulation trial is thea terminated if

any. B exceeds 6 . If sampling is not terminated, YGEN calls
: m ;

%

UPDATE to compute the posterior ;ﬁ(y} and ?R(y),'and éhe sampling
procedure is continued. 5 .

8. COUNTX. This subroutine is called by YGEN whenever a
BR z_em or by SEQDES whenever JMAX observations have been
taken. It counts thg number of times each model is chosen and re-
cords the disttibution of sample sizes. Thase are then output
after all simulations have been computed.

9. INVXTY. Inverts a symmetric matrix stored in the 1ower'
symmetric storage mode. |

10. TRIQUX. OQutputs a lower triangular matrix.

11. MTVEC. Computes the proddct vector resulting from the

multiplication of a vector and a symmetric matrix,.
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12, RAND kSAND). This pair of éntries provide the.pseudof
random sequence of uniform random variates. SAND is an initializ-
ing entry which must be called before any calls to RAND. When RAND
is cailed, it computes the next value in the rénéom sequence féoﬁ
the cufreht value. The return argument of RAND ig thé floating
point uniferm random variate. The input and return argument of
SAND 158 an argument which ;aves'the integer value of thelrandom
varlate. The generator is the multiplicative~congruential type

obtained by tsking the low order 36 bits of the product r_ .»k

r-1
where
rr~1. is the previous random number
fo is 1 énd |
K is 517, -

The properties of this generator are discussed by Taussky
and Todd (1956) and Coveyou and Macphersoa (1967).

13. BCREAD (X1,X2). BCDUMP (X1,X2). These routines, respec-
tively, read and punch cards in absolutz binary at the rate of
22 words per card., The data read or punched begins at the location
in core of the variable X1 and ends at the location in core of the

variable X2Z.
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v 0QooLoC COMMONZUNT TS/ TURINGTUNDUT. . MASK. LEVOUT PFMT (&)
0000200 COMMON/XRAND /Y ,EPS UNIF, U
00C0o300 COMMON/ERR/TAU S IGMA
QGC0400 COMMONZALPH/TALPHIL1OO0! {1 TALPHISTE2) ALPHMULIO00) (REALMUIS]2)
a0aoson * PHPARAMILIO) «RUDI L) «PRUCIDODY
acQo&600 COMMON/PS/DPINDEX{LL), PRECL2000)
00oOT0D INTEGER PINDEX
000800 COMMON/CNTRLS/NHYP o NALL 4 NFAC ¢ NFULL yNFULME s TRYMNT y NTREND, NORS, LTRUE
Q0COs00 INTEGER TRTHMNT
DocIcOo0 COMMOMN/PREMNC/NANG (1000 yPCS XMSE. XHMSTLINITAL 4 ITHCNY[101,M50FAR
0001100 COMMON/ INF /X [NF
0001200 COMMON/PROARS/THETALI0Y,CSTOP
00C1100 € .
0001400 C
apo1s00 C
0CcC1600 COMMONSMM/OESML1000)
0nor7Ino COMMONZYDIST/SCI0Y,RE101,5VI10),RVI10)
QDeLa00 COMMON/XTRAZAALYICGODY ,B{2000),C120001,0D(10}
0001300 C
002000 C%x L= ] E-3 *f EE & X3 % E-X -3 b2 2 2 e ¥ £ X &% T % Lo -3
aoo2ton C
0002200 DATA ENDCRD/GHENDCRDS
0002300 REAL IDENT
0eC2400 FOUTVALENCE EXI4 EX)4(K5,5K)
0002500 DIKENSION T0ENT(14) .
aoc2600 DIMENSION IRPFMT {141 -
coe2700 LOGICAL 1FSTRT,RESTRT
00C2R00 LOGICAL KPGEN
0002900 LOGICAL POLY
con3on0 NAMELYST /NAML FHNFAC s NHY Py NSYM, MXTRYS , NTREND, LEVOUT, LTRUE y TAU,
one1Loon X CSTOP,TMAX,[FSTRT,RESTRT
0003200 X aPOLY,NX
0OC3400 C
0003500 C**#&&#t#t#**# I3 2232223323221 233 2 P21 R XS s st il ls sl
00C3600 C
ape3Ton KPGEN=.FALSE.,
0OGIRAN 160TO=1
0¢CAq00 CALL TIMEL[TSTRF!
0OC4 000 1 READ{LIUNTIN,S040) TDENT
0o0s100 IF{INENT{1),EQ.ENOCRDY STOP
00C4Z00 WRITE(TUNOUT,,£010% [DENT
0004300 ¢
0004400 READUTUNIMNG NAML Y
DCCa500 WRITE (TUNOUT + NAML b =
00C&4600 NFULL=2#%NFAC
0004700 NFULML=NFULL-1
0004800 IF(POLY) NEUEL=NX
[eRee LT o2} SIGMA= 1,0/50RT{TaU} -
0oeos5000 READITUNIN,S0601 [NPFMT
0Ccs o0 MUD( L] =1
cocR2o0 . PINDEX{1t=1l
acos3co DO 190 N= 1, MNHYP
00¢5350 THCNTINY =0
0005400 WRITE(CTUNQUT . 6365)
00C5500 READ(EUNEN,SG20) NPARAMINI THETA([N)
00nos700 MUNENEL b =MUDENY ¢ NPARAM(NY
- naasso0 PINOEX(N#11=PINDEX(NY+ (NPARAMINI & [NPARAMINI+L /2
00C5300 MULD = “UDIN) .
anCas00 MU= MUDIN+#1)-1

B o Lo, - - e e e - .
- B T oW - : Sl T R - T TIPS T ISR e e -



o0

onecé1 00 TPLO= PINDEXINY

QoCHa2Q0 1PHI= PINDEX[N+LI-1

nOc63IN0 READCIUMNINGSOI0O ML AL PH{LY s L=MULO,MUHT )

QCCA4 Q0 READLTUNINGSOSO) VAL PHMUL{EL ) L=MULD MUK}

DO0CHRD0 IF [NSNELLTRLUE)Y GO TD 100

00C8600 KR = NPARAMINY T
000ATHO WRITELTUNOUT ,6360) .

NO0ARRND READ{IUNIN, 50501 {(REALMHLE,L=1,NR}

2006900 WRITE (IUNQUY,&355%) (REALMULLY,L=1,NR)

nocrIang WRITE (IUNOUT 43607

0oar100 100 CONTINUE

aeCT300 READ{IUNIN, INPFMT)Y[PRECIL),L=TPLO, [PH])

OOCROAN ¢ WRITELTUNOUT 60501 Ny NPARAMIN) ,, THET A[N)

QrQR2ng WEITE(TUNDUT,, &0601{TALPHIL) , ALPHMU{L) ,L=MULD,MUHT)
QOCR300 WRETEA{ TUNDUT ,6050)

cCcor400 CALEL YRIANGIPRECIIPLOIGNPARAMINY B, PFMT TALPHIMULOY ]
QDCASDO €7 -

QQ0RAQD CALL MIVEC(PRECUIPLO), ALPHMU(MUL O}, NFARAMIND PMUIMULOY
0GCRT0O TFLLEVOUT.GELSIHRETELTUNGUT 44060 TALPHILY s PRUTL s L=MULD,MUHT Y
cOCcRANA 190 CONTINUE

QCCARIQ0D €

oCccaoDg ©

o001 00 £

ococeznn M = NPARAMILYRUE!}

8009300 JJ = MUD{LTRUE)-1

DOCI400 XMSE=0,0

cCeasce DO 195 J=1.HK

QCC9400 JJ o= JSel

ao0e700 195 XMSF = XMSE ¢ {ALPHMULJJ)-REALMULJ) }#%2

oCca9s0n KMST = SORTEXMSERTALL

0CCI900 XMSF = SQRT(XM3F)

001QC00 WRITE {TUNQUT,.&100) XMSE, XMST

0010100 XMSE = Q.0

0010200 XMST = (.0

DoI03IQ0 po 197 [=1,MXTRTS

aGro400 197 NAVGIEE = O

Qo1c500 PCS = 0.0

0010400 CALL SANDIENITAL)

0010700 TFEKPGINY [NITAL=NTLSY

QQL0R00D IFCIFSTRT) READCIUNIN,S0901 TNITAL

aQlo900 IF{.NOT.RESTRTY GO TO 200

a011000 WRITELTUNQUT 46425)

ae1iion CALL BCREADI(NAVG(1),MSOFAR}

0011200 C b

0011300 C

0011400 C

0011500 Mtk ottt rdrbbdrddthddddrbbrkdrsostrhsdrrrd bbbk bbb dorrhbddsd
00115600 C

0C11700 200 CONTINUE

0011200 W] TELFUNOUT +6500) IHITAL

DOLLI900 &S00 FORMAT(2AH STARTING VALUE FOR RAND= D12}

0012000 CALL ALOMB

ngl2100 CALL SVSTRT

oolezz2o0 €

OQ12300 CEt st rr e Rt et Rt e bt e s e oot e oo e bt b b ek e kb e R d AR LS NIk attnte
00172400 C ’

£012500 HMM=]

0012600 TFIRESTRT) MHM=MSOFAR+]

oole2t00 NG BO0 M=MHM NSYM



91

oCc172800 WEDF AR
Q012900 CA4LL GISTRT

Qo13000 DG 700 HYRA=|, MXTRTS

no13Yo0 LONEs NTH

0013200 SIKF= 0.0

0o 3300 G0 60D 1TRY=], NFULL .
anl12400 TRT¥NT= JTRT-1}

0013500 CALL MFORM

0013600 CALL [REMTY

Q13190 IFIXINFLLELSINFE GO TA 600

nol13Rpa STHF= XI1INE

00134980 15v= TRTMUNT @

0014000 DD 590 MN=l,HKYP

0014100 SYIiNE=5INY

0146200 BYI{NI=REN]

0014300 g0 {ORTIHUF
oolas00 600 LONTINUE

0014500 TATMNT= 5V
BE14HC0 IE (LEVOUT.GE.3) WRITE{IUNDUT, 62100 1SV, 5INF
c014700 CALL RNOM

0014800 CALL YGENU4T50}

014900 707 LNRTINUE
co15000 750 LALL COUNT

ne1sLoo CaLl TIMEF(THUOW)
005200 TPRNT=( TNOW-TSTRT) /3600, Cz

0015300 IFITPRNT LT, TMAX) GO TO 800

0015400 160¥0=2

COl5500 60 TO 810

00156080 800 CONTINUE

DO1STO0 €

nOLSREN C

0015900 €

0016000 BED COMTINUE

Girlat oD WEITFITUNDUT y6240) TPRNT &
CGLlAZDD ¥AMSE=XMSE/FLOAT{MSOFAR |

0C16300 XXMST=X¥MEEESORT(TAY)

0016400 ESN=0.0

NN16500 DO RSO T=1,MXTHTS

0C164C0 A50 ASN=ASNEFLOAT(NAVGLTIS])

2016700 ASHN=ASKN/FLOAY (MSOF AR

001&R00 WEITECEUNOUT6400) INAYGIT 1, 0=1.MXTIRTS)

00IARID WRIYETIUNDUT AAC0F CITHONTIT) , 1=1 ,NHYP)

NCI6GRZD A600  FORMATOLH LOT1G) -
ONIASND  &400 FORMATEIH 101171}

aC17000 PPCSEPCSAFLOAT (MSOF AR}
007109 WELTELTUNDUT 63001 ASN(PRC S KXMSE, XXMST, IN[TAL
0017200 NTLSV=INITAL

0017100 KPGEN=, TRIIE,

0017400 G0 TN (1,10001, IG0TO

0017507 1000 CALL RCOUMPINAVGIL] ,HSOFAR,O}

0017400 WP L TELTUNDUT 164501 MSOF AR

oe17700 S10P

Q017800 C

ol L I T T T S S
gnironn C

QOIALON GO0 FRRMATII316)

O01AR2Z00  S020 FORMATLLIALIF12.6,10011

GOIR300 5S040 FNRMATILIIAG,AZ]

0019400 S090 FORMATITIZ2F6.0)



oniasCo
noIRse00
no14¥v00
0O1A800
NQLRI00
oelsegan
0Qp1R100
0019300
0019400
0N1950L0
0019600
Do1eT6o
0019800
0019900
cop20000
Q020100
0020200
0o20300
0020400
0020500
00204600
00207G0
0020800

FOOOF0D
cocezon
oc0o0300
co00s00
o0anson
0000600
ancoTon
Q000809
00CO900
00C1a00
0on1100
2001200
agel13ne
00ol40n0
0021500
acclaco
0an17o0
acC1Lsn
oCC1300

£002000 |

onoZino
0002200
000x3IN0
neozsano
a002500
3007600
ooc?roe
0002400
00aze00
ongJ3000

C
L

C

22

SOR0 FORMATIATA,3F6.04,2011
5090 FORMAYIOL2)

LY

*

] o x ¥ ¥ & R & LR * & o 8 & L e L & b

4010 FORMATIIHLI+13A6,142]
6050 FORMATELIHKFOR MODEL E3/1&H NO. PARAMETERS J5/13K PRIOA PROB. Glb.-

X

s

6060 FNAMATIS1IHKTHE PARAMETERS [N THE MUREL AND THEIR MEANS ARE-- // -

X

(0 T10,614.5 )}

6090 FORMAT[44HKVTHE PRECISION MATRIX DF THE PARAMETERS [5--1
6100 FORMAT[ 4OHKINITIAL DISTANCE OF PRIOR MEAN FROM TRUE VALUE  R14.5/4-

X

18X, J6HOTIVIDED 9Y SIGMA15X,Gl4a.51

H2F0 FORMAT{EM 5G18.5}
6240 FORMAT(24H CURRENT EXECUTION TIME FEQ.L3}
6300 FORMATIGHKASN: GL4,2/6H PCS= Gl4.4/712H AVG.DIST .= Gl4.6/ -

X

14H NORMALTZED = Glé4.&6/21H% 012}

6355 FORMAT{IH BG16.8)

6360 FORMATILIH 40(2H +))

6365 FORMATIIH BO(1H*1] P

6425 FORMATE 37H THIS 1S A RESTART OF & PREVIOUS CASE}

6450 FORMATISSH THIS CASE WAS TERMINATED RY CLOCK. DUMPING FCOF RESTART/-—

X

X

+29H NG. SIMULATEIONS COMPLETED =  [A}
END .

SUBROUT ITNE "ACOMA

COMMONZUNT TS TUNER, TUNDUT yMASK,LEVOUT + PPHT L4}

COMMUN/ALPH/TALPHULOGO Yy TLALPHES12) , ALPHMU{I00D) »REALMIL512) -
(NPARAMOLGY MU L1}, PHRULLINOOD

COMMON/CNTRLS/MHYP (NALLyNFACSNFULL NFULME (TRYMNT (NYREND, NOBRS L TRUE

C######**#0*##t*#ﬁt######tt#**##6#*##1####t#&t##tt**#*######&*t#tktv#v#k

r

100
110

150
200

250
300

350

MAILL = NPARAM[1)-KRTREND

TF{NALL.LE.OY RO TG 110

DO 10G K =1l,NALL

TIALPHIKTI= TALPH[K)

CONTINE

TELHNYPRLLELLY RETURN -

DO RO N=2 (NHYP

MAX] = MUDIN#LI—-1-NTREND
K¥=0

K=HUDIN)I -1

KK=KK+1

K=¥+]

IF{RK.GT.NALLY GO TO 420
IFIK.GT.MAXTY GO TO RO0
IFCTALPHLK) ~TTALPHIKK]T 130041584400
YSaMALL 2

DO 350 J=KK,HNALL

KS=KS-1
TIALPHIKSE=TTALPHIKS-11}
[TALPHIKKI=[ALDHEK])

NALL =MALL+1

Q¢



0ro3lnd 60D T 150
cneazao 40D KK=HK+]
DCCIVCD IFEKE-NALLY 250,250,450

aa03agn G20 TFIK.GT.MAXTE GO TO AGOD
Q0eCasne 450 NMDRE=MAYT-K+]

OGCAL00 KD=K-1

QCcciton DO 500  J=1,NMORE

0Qe38nn KSE=MNALL +J

00C3qCce KS2=K+

Q004000 [TALPHIKSL} = TALPH{KS?)

QCos100 500 CONTENUE

QBC4200 NALE=NALL+NMORE

0004300 AROG CONTINUE

00C4s00 TFILEVOUT .GELTINWRETECIUNAOUY 15000 NALL, T T1ALPHI{1), I=1,NALL]
O0C4500 00O FORMATILIH FLO/Z{1H 25151

[SIR I A s o] RETURN a

QCo& 700 . END

ocenioo SURRDUTINE SVSTRY

agcez2oo COMMONSALPHS TALPHITIO0Q , 1 TALPHISIZ ), ALPHMUC1000) ,REALMUISI2Y
aeee3nn X fNPARAM{LIOY ,MUD( L), PHULIDROD)

Q0C0400 CUOMMON/PS/OINDEXILIYPRECI20001}

oo0%c0 ITNTEGER PINDEX

ancosid COMMON/CNTRLS/NHYP ¢ NALL yNFAC « NFEHLL « NFULML, TRTMNT ,NTREND,NOBS,LTRUE
0cao7Ton COMMONZPRNDASSTHETALLION (LSTOP '
TOOCRRCO DIMENSINN XLPHMULTOO0D]) 4 XPRECIZ20001 o XTHET (10 XPMU{1000)
a0conen Mz MUDINHYP+1p=1

coCLn0o no zg J=1,M

ooCct1o0 ¥LPHAQE DY = ALPHMUL DY}

nocL2o0 XPMUL I =PMU( I

acol13el 20 CONTENUE

noo01400 M = PINDEXINHYP+1}-1

cOCcl15N0 00) 4G J=1,M

oo01400 XKPRECLJ) = PRECEL

000700 40 CONTIMUE

00CLROC NO 60 J=1.NHYP

00C1900 XTHETIJY = THETA[J}

0002000 60 CONTINUE

0002100 RETURN o

042200 ENTRY GTSTRYT

Q002300 Mz MUD{NHYP+1ji-1}

002400 DN 120 J=14M

0002500 ALPHMUL J1=XLPHMULY)

Q002600 PMU( JI=XPMUT )

0OC2700 120 CONYINUGE

QueZa00 M=P [HDEX{NHYP+L =1

Q002900 DA 140 J=1.4

NOCx000 PREC(JY= XPREC(.J)

0Co03100 140 CONTINUE

noe3200 DO 160 J=} 4 NHYP

oo0323%00 THETA{J) = XTHETY( 41

0003400 160 CONYINUE

00031500 RETURN

00C3500 END



0000100 C
ocoQ1se
aocozon
neon3on
aocosenh
0000500
[olelolelNale)
00goTa0
pacoann
noCav00 .
co01000
N0C1I00
00Q12c0

QUaLI00 CQ##“¢¢#####ﬁ#*#ﬁ*#*ﬁ#*#######*9#%#######¢#¢¥$#t$*k##t¢#########*#*#t#tﬁ

0001400 €
g0a1500
00016AN0
GQag1 700
opo0lRON C
occleol
cnec2o0n
aeo02100
0002200 .
N0C2300
Qocrenn
ororsoe
0OC?6e00
noozrIoo
neozano
QaC74900
“QCO3IN00
aoa3loo
coeo3IzGe
acocra1o0
oecrsoo
0eoIz00
QCO3600
acearcoe
0OG3IRNO0
ocgisol
00nadn0 L
a0c4100 C
0004200
ap04300
noL4400 C
aneasen
copanco
Q004700
0C04AND
nec4acd
00Cs000
o0Nst 0o
oees200
acesion
ceLsson
JOCSS00
ADCSADD
gccaTo0
0008800

94

THIS 15 FOR TWO-LEVEL FACVORIALS DNLY

44

40

100
10
130

150

500

570

L5

950
1000

X

SUBRNDUTENE MFDRM
COMMDNZUMITSY TUNIN, TUNDUT s MASK ,LEVOUT y BFMT (4]

CAMMONZALPH/ [ALPHITODO )y THALPRISLZ2) , ALPHMU{L00G 1 REALMULSE 2

GJHPARAMILIO] (MUBT T FMULIGOO)
[NTEGFR TRTHNT

COMMON/CNTRLS/MHY Py NALL yNFAC e NFULLy NFLL ML TRTMNT (NTREND, NGRS, L TRUE

COMMON/MM/OESMITCO0)

L % & LA ¥ kx ¥ *E ¥k ¥ ¥ L2

GIMENSTION LASTALLIQ)
EOUTVALENCE {RS.SX),0LIX, X1}

07 5 N=14NHYP
LASTA(NI=Q o
CONTINUE

o 1007 1=1,NALL
IPARAM = ITALPH{(}
EF{[PARAM.NE.O} GO TO 40
A= +1.0

GO TO 500

CONTINUE

[TR=TRTMNT

NYx= 1.0

DN 150 J=1.NFAC
XI=ANN{MASK, [PARAM]

IX= x4+l

GO 10 {130,100, IX
SK=AND{MASK, [T®)
KS= KS+1

L0 T [110,1300, KS
D¥= -DX

TPARAM= TPARAM/Z
1TR=[TR/2

CONTINUE

A= NX

CONTIMNLUF
IFILEVOUT.GE.T) WRITELIUNGUT 60001 THALPHIT) , 4

PO 9592 K=1,NHYP

IFILASTAIKI-NPARAM{KY 4 NIREND} 52049%0,9%Q
[x= MUDEK)FLASTAIK])

TECITALPRELY — TALPKIEXI) 950,550,9999
CONTINUE

LASTALKI= LASTA{K) +t

DESM{TX )= A

COMTINUE

CONTINUE

IF(KTRENDLLE.O) GO TG 1060

Az NORS

P 1.0E0

N0 1050 J=L,NTREND

8= RAEA e

* &

¥

¥

b2

=&

=]



acesaco
Ancenon
aposA10N
oQCe? 00
Q006300
DOCh&TD
QpgaSOD
DCLAAHOD
AQOKRTON
or0sR00
00C6200
QeeTngon
DCoY100
oQCcrI2Q0
00CTIAN0
DOCTaQn
OGS 00

0000100
0000150
n000200
0coo300
0000400
0000R30
0000600
GOGCTO0
Qoonsa0
onco90o
000t000
oocitiea
0001200
0001300
0001400
0001500
0001400
00C16%0
o1 700
00C1300
0061900
aoGroon
goczran
d002700
0002300
oCccz4a00
0002500
0602600
QoQ2700
00CZB800
0ogZenn
00030600
0003100
npa3zoe
0003300
0CC3400

95  * o

KS= J-NTREND
N 1040 K=l ,NHYP?
KG=KS+MPARAMIK)
NESM{KS)= B -
1040 CONTINUE
1052 CANTINGE
1067 CNNTINUGE
ITR=FUDINHY P+ ~1
1F {LEVOUT.GE.T) HRITE(TUNCUT 60101 {DESHIT)41=F1TR)
KETURN &

9999 CALL EXIT
RETURN
6000 FORMATILH 164FA.0)
6010 FORMATIGEH DNESM=  /J{6X,15F8.0))

END

C THIS 1S FOR POLYNOMIALS DHLY
SURAMNYT INE MFORM
COMMODNAUNITS/ TUNIRN, TUNOQUT ¢ MASK , LEVAUT, PEMT (4}
COMMONZALPH/TALPHIL OO0V s TIALPRISL 2 ALPHMUTLD0D) REALMUILSIZ)

¥ fHPARAMILIDY . ¥UDLL1) . PMUL]IQOO) -
INTEGER TRTMNT
COMMON/GNTRLS/HNHY Py NAL Ly NFACyNFULL  NFULML TRTHNT  NTREND, NOBS L TRUE
COMMON/MM/DESMI{1000) .
C b
C¥e % %3 & sk % fk &% ¥ & ¥ #wkx bk Fk  kk  BE k% G4

DIMFNSICN LASTALLC) -

EQUIVALENCE (KS, SKI0IX, %1}
Lkt R A e R A R S BT R A R N R R e P e A A R E kOB A R R E R G LT e A LTS A S Y
C

LX=2,0/FLOATINFULL=Y]

X==1,0+FLOATITRTIMNT ) #0X

IF{ABS(X).LF 1 .0E-4) X=0.0 _

NN 5 N=1,NHYP

LASTAINI=O
5 CANYINUE
C
00 1000 I=1.NALL
1PARAM = FTALPHIT}
A=X®s]1PARAM
C
C

500 CONTINUF
FFOLEVOUT.GE .7 WRITECIUNOUT 460001 T1ALPHITI, A

DO 950 K=l 4NHYP

TFLLASTALKI-NPAPAMIK} ¢ NTREND) 520,950,950
520 IX= MUDUK)+LASTA(K) .

TFTITALPHIT)Y — 1ALPHITIX)) 950,550,9999
550 CONTINUE

LASTA{K) = LASTA{K}) +]



98

0003500 DESMEIIXE= A
0OC3I600 950 CONTENUE
0003700 1600 CONTINUE

00GIRD0 IF{NTREND.LELQT GD TO 1060
aGc3asoo A= NOBS

QOC4000 gB= 1.0FQ .

0004100 DO 1050 J=1,NTREND
0004200 B= BEA

0004300 KS= J-NTREKD

DO04400 00 1040  K=1,NHYP

0ao4s00 KS=KS+NPARAM{K]}

QOCHasCo DESMIKSE= R

onca?oo 1040 CONTINUE
0004R00 1050 CONTINUE
0004300 1060 CONTINUE

aoo0sn00 [TR=MUDINHY P+ 1~1

cooston 1F [(LEVOUT,.GE.7) WRITF(IUNOUT,6010} (DESM{T},I=1,1TR}
000CR200 RETURN

0605300 C

0005400 9999 CALL EXIT I

0005500 RETURN

a005600 6000 FORMAT[IH [6,F&6.0]
aecs700 6010 FORMATIGH NESM=  /Jl&X,15F3.0)}

00CSHO0 T

00C5900 END )

0G6CC100 SURROUTINE [NFMTN

00C0200 COMMORFUNTTS/ TUNTR, TUNDUT (MASK  LEVOUT, PERTL4)

0000300 COMMON/CNTRLS/NHY Py KALL  NFAC, HFULL , NFUL M1, TRTHNT . NTREND,NOB S, LYRUE
000400 INTEGER TRTMNT

£0C0SCH COMMNN/XRAND/Y s EPS, UNLF U

0080600 COMMON/ERR/T AU, STGMA

DCO0T00 COMMON/ALPH/ LALPHEEO00) 1 TALPHIS12 ) ALPHRUILDOD HREALMULS12]
C000RA0 X JNPARAMEIQ},MUNELYY,PMU(1000)

00C0%00 COMMON/PS/PTNDEX (111, PRECI2000)

necLono [NYTEGFR PINDEX

0001100 COMMON /INF/XINF

00c1200 COMMIN/PROAS/THETALLOH,CSTOP

oeo1aco COMMONFHM/DE SMILI00DY

0C01400 COMMON/YDEST/ S{101,RE10), SV10),RVI10) :
D0OL500 COMMANZXTRA/ZAATL1000) ,BI200C1,C 120081, DE10}

0001400 fIIMENSION DESMUT103 . TRACEL1O}

0001700 LOGICAL YPDY

peCIROO C .

00C19¢0 C*########$t####¢$###ttt#*###u#tt&t**###ﬁ#4########$#¢#t####¢t¢t*#¢#apt¢
ann2000 C

Q0C2100 GO 10 5 . .
0eE2200 CNTRY UPDATE o
nOe2300 UPRT=, TRUE.

acore00 GO TD & -

nocr%00 5 UPOHT=.FALSF.

0OC2600 6 CONTI1NUF

00027450 DO 10 K=1,NHYP

00028460 DESMUIK)I=0,D0



el

0oc29Qn 10 CONTINUE

OQL3n00 C

DOO03100 CEtrttattr et ibatntrits eats bhe bt ettt R enus CRRaat ks SRt e bR A ERILDRER ARG A LD
oocr200 C

Q{C3300 DO 520 N=1,NHYP -

noe’&og IF(LEVAUT.GELS) WRITE(TUNAUT,&00%) H,NOBS

QA0C3ROD BS= MUGIN)

Q003400 JEs NMPARAMNI

Q003700 L

nociIson C

QGL39c0 I8=0

A0nNsn00 0o 106 J=1,J4€

NOCs1 00 b KS1=MS+4-1

O0G42 00 TFLUPDTY GO 7O 25

0004360 DESMUINT=NESMUIN)I+DESMIKS 1) AL PHMUCKS])

AGCaa00 25 CONTINUE ®

2004500 CPO 100 Ja=1,

D0GC4600 IR= [R+1

04700 K$2 = MS+JJ-1

0004800 AITAY= DESMIKS]1 PEDESMIKS?)

00C4900 100 CONTINUE

oees000 C .

DOCH100 [t htdbt se bt na bt bebh A adad bbb bERe T RARET RO R FARAISLE QR TRERTH LS ERAFE SR phBE ke
opos200 C

00C5300 IF{LEVOUT,.GE.6F CALL TRIANGI(ByJE RsPFMT, IALPH{MSH)
neQ5400 ESI=PINDEX(N+L1-PINDEXINI

oeCs500 KS2= PINOEX{NM

0005600 nno 120 K=1,K51

Qpos 700 Bik)s TAUSR{KI+PRFC(KSZ}

GOL5800 ClK)=R(K]

coCRa00 KG2= ¥52+1]

c006000 120 CNNTINUE

QCCas1C0 CALL INVXTX(B,JE}

co0s200 IF{LEVOUT.GE.&) CALL TRIANG(RA, JE8,PFMT, TALPHIMSY)
0005300 C

00C6400 L2 & &% &% w& 4% &¢ ®r  #8 kb HE &% 0¥ - k& &% FF &F ¥d
ooLes00 TF{.NDTLUPDTY GO TO 199

0006600 KS1=PINDEXIN+L

aocsTan IPLO = PINREXIN]

0006800 KS1=KS1-1PLD

noCARING MUK =MUD{IN+1 )1

noo7000 KS2=1PLD

coe7100 N 130 J=1,KS51

0cQT200 PRECIKS21=CLJ} 2

nocT3oo KS2=KS2+1

00Q7T400 130 CONTINUE

0007500 K81 =MS~1

anoTacao no 150 J=1+JE

0007700 KS51= KSi+1l

ooo7800 AAT JI= YODESMIKSII®*TAU + PMUIKSL)

oeCYa0g 150 CONTINUE

0208000 CALL MTVECI{B,AA.JE,ALPHMU{MSYT) v
NOCELI00 CALL MIVEC{PREC{EPLO}, ALPHMUIMS ), JE+PMULMS)Y
000RZ20Q0 IFILEVOUT.LT.3Y 60O TO 520

BOOA300 TEFILEVOUT,.GE.5) GO 7O 160

Q0C2400 WRITEL{ [TUNOUT 60201 LALPHRUIL e L=M5 . MUHI }

00QH500 FF{LEVOUT,.LT.4) GO TO 520

00QCR&00 WRITELIUNDUT . ACS0) -

00cA70C . CALL TRIANGIPREC{IPLOD, JELB,PFMT, TALPHIUS)F



28

0OCRARCO G0 Ya S20

0OCA9QO 160 CONYINUE

0fCse00 WRITECLUNGUY 2 6CH0 ETALPHOL) AL PUMULL ) 4 PHMUIIL 3, L=MS  MUHT)
cocalon WRITE{TUHNDUT, 60801}

0009200 CALL TRIANGUPREC(IPLO) ) JF B4 PTHT L 1ALPHIKSYE

nacy oo GO 10 520

0GL94Q0 C

nogeson o P R L I I R A R T T T e S R e R P e S 2 2
noces00 €

ooLeTo0 C

aoc9fon 199 CALL MTVECU(B,DESHIMS)+JE,AR)

o0QCeaNo DO 300 KS?2=1,JE

0010000  “2A0 AALKS2E= TAUFAA(KS2)
ogIe100 300 CONTEMUE

col10200 IFILEVOUT.GE.S) WRITE(TUNOUT 6010 (AALSY =] +JE}
Q00146300 © o

0D0104C0 C¥E . ¥ *E % & ok & ¥ o %k % =¥ e, k& % & L3 *
0010500 C '

oolosco RINI= 0.0

0010700 MMS =ME-1

0010300 DO 360 J=14JE

0010900 HMS= MMS+]

coL1000 PiNI= RIN) + AALJIEDESHIMMS]

0011100 360 CONTINUE

a011200 RIN)= TAU*{1.0-RIN}I
0011300 €

OOL1600 Ceé #8 %%  && %  HE&  kE k& KF  ¥x & &E k& k& k& wd 4 %d
ao11se0

n011600 MMS=MS

DOLILTCO L=0.0

GO1LRCO CO S00  J=1,JE
0011300 C=C+AALJ)EPMULIMMS)
0012000 MMS= HMS+]

0012100 500 CONTINUE

ceiz2200 SINI=C/RIN]
0012300 TF(LEVOUT.GE.5) WRITE{IUNOUT 60200 RN} S(H)
GQl2400 520 CONTINUE

oe12soo C

0012600 1F{UPDTY RETURN

0012700 C&d & % Kk wE  Fk  FF  wx %R Kk &¥  KE ¥ k¥ kX kx Kk %R
0O12B00 1

0012900 nrr 1000 N=1,NHYP
0013000 C= 0.0

0o13100 NN SHO  J=15NHYP = -
0013200 IFINLEQ.JY GO YO 580

no131300 C=C+THETATJL #R (D)

0011440 580 CONTTHUE

0013500 TRACE(NI=C/RIN}

D013600 IF(LFVOUTL.GE.S) WRITE{TUNOUT,6035F TRACE(N)

0C13700 1000 CONTINUE ’

NO13R00 €

OClBQOD C##*#*#%#é##ﬁa##*&#*&t8####*########*####t*k##k#tt$$¢#$*#####tt#ﬁé#t#aﬂ«
no14700 € :

0014100 XINF = THETATL] & TRACE{])

Q014200 DO 1500 N=2,NHYP

0D14300 JE= H-l

0014400 ¥INF = XINF « THETA{N} # TRACE(N}

0014500 po 1450 J=1,JF

00164600 C= S5(M} - %11



0014700
ON1ARDO
Q014909
oeL5000
coLsLoo
0015200
0015300
001k400
Deiss00
0015600
0015700
0015400
0015900
0016000
016160
nol16z00
0016300
0016400
0016500
00164600
00L6eTO0

Qeo0100
ooco2o0
ooco3no
[T elaanyela]
2000500
DO00ANO0
0QoO7To0
00C0800
00Cco900
aocineo
cOCL1eo
o0n1200
00ol3ce
0001400
0001500
0001600
QO00Y TR0
nonLeoo
[selvd Redele]
00c2000
‘0002100
00C2200
00C?2300
0002400

Ao an

1450
1500

f#####*###*#?###t#*##ﬁ##t#*$##

6005
6010
6020
5035
6060

99

B=CHCEERINEFRIINY :
XINF = XINF + THETAUN] sTHE 1AL TR

CONTINUE
CONTINUE

TF (LEVOUT.GE.5) WRITECTUKGE AD20Y i

RETURN

¢##t$$#*######*#ﬁ*ﬁ####ﬁ%&#?§¢$*“¢‘“¢Q*;wﬁﬁ¢¢***‘#*$#*Q¢¢**$t**#*#
-

FORMATS

FORMAT(3IH
FORMAT(2H
FORMAT{IH
FORMAT{TH

FORMAT (S1HK THE PARAMETERS 1H THE MODTL ppy oy
X {11 110:2614451)1 HELR HEANS ARE--

L3

phbbEEEEERERL
* Aran sttt R R SRR L EEE T EY RO &

N= Tb.7H NOBS= [6)
A/UYH 10612.41)
10G172.41

TRACE= Gl2.4&)

fr-

: - COF THE oo
£DI0 FORMAT{&4HKTHE PRECISION WA MLIN o . PACAVEITERS [S-e X

100

&Qeo

END

SUBROUTENE RNAOM
COMMONZXREND/ Yo GRS s UNIE U

COMMONY UNT

TS/ iUN[N.PUNUUT«“AHK.LFVDUL

COMMDN/ERR/TAUSS1GHA o

DATA ADF2.51551774A1/.B02080 A2/ 0108 4,

x B1/).432TRB/ 1R27, 1892677 (WA72001 3, B
X UMIN/.0DOCOOLS -
u=u

CALL RANDUUNEF)

U=UNIF

[F{UNIF.GY,.50} U=1.0-UMIF¥
IF{ULLT.UMINY GO TD 100
T2=ALGGI1L.0/4U=U])

T=5QRTIT2)

EPS=T—{AOFATSTH+AZETZ] /11, 0N TIRZETNN G 4o gay

If (LFVDUT,GE.T) WRITE (UM L RDOOY UMy fry e
JFIUNTF.LT..50) EPS=-EPS TEerEr
EPS=EPSHSIGMA

RE TURN

ERPS=-1.0E15
IF{UNIF.GT,.50} EPS=~EPS

RETURN

FORMAT(6H RAND J1H 5GLG. I}

END



100 | R

00H0100 SURRDUTINE YGEN(®}

cecoroo COMMONSUNT TS/ TURIN, TUNOUT s MASK ¢ LEVOUT  PERT (4 )

a00n0300 COMMONSALPH/ZTALPHELOOO) (TEALPHIS12) (ALPHMU{LIDO00) yREALMULSYLZ) -
0000400 X fNPARAMILIO L MUDL I, PRULLO00]) *
0000500 COMMON/CRTRLSAMHYP  NALL  NFAC o NFULLy NFUUMY, TRTHNT , NTREND, NDBS, LTRUF
an0os 00 [NTEGER TRYMNT

0000700 COMMON/MRZDESML 1000}

n000RD0 COMMON/XRANDG/Y JEPS UNIF U

no0e9c0 COMMON/YOLST/S{10)RULOYSVILC) +RVYILD)

ool 000 COMMON/ PROBS/THFTA(LOT,CSTOP

ocorion COMMON/PRFMNC /NAVGL1000) «PCS o XMSELXMSTINETAL , THCNTI10],MSOFAR
001600 EOUTVALENCE (SK XS, [1X,XI)

0001600 C

0001700 €

0001R00 CALL MFORM

001900 Y=EPS

00C7a00 M = NPARAMILTRUE}

apozion JJ = MUDILTRUF -1

0002200 N0 550 J=1.M

0002300 JI o= 9 41

0002400 ¥ = ¥ + DESM{JJISREALMULY)

0002500 550 CONTEINUE _

0D02600 SUM = 0.0 N

0Cco2700 DO 700 N=1,NHYP

CO07RO0 C=Y-SVIN) . .

2002900 N=RVINIECHC .
0003009 SINI=SVND ‘ -
00GA100 RINY=RVIN)

0003200 Q=-,50&0

GoC3IIN0 IF{ARSIRY-60.0) 660,670,670

¢n034L00 660 1F(THEVAIN)I-1,0F~181 &6TC+HTO,680 =
aee3s0q 670 THETA{NY = 0.0

000315600 Gn 10 700

0003700 680 A = ALOGITHETA(N}] + @Q -
0003800 IFLABSIAY.GE.TO0.0) GDTD 670 )
0603900 690 THETA{N] = THETAINT % SORTIRINI} * EXP{O}
ano4anon SUM = SUM + THETA{N)

0204100 TO0 CJINTINUE

coCazno [=0

0CQ4300 D0 710 N=],NHYP -
00Cs&00 T10 THETA(NI=THETAINI/SUM -
nogs1a0 DO 920 TI=1.NHYP

Co0A200 IF(THETALIL)-CS5T02} ©20,%910,310

cO0A300 910 t=1

NOCe400 GO 1O 1000

0006500 9QzZ0 CONTINUE
000600 1000 CONTINUE

[e2elelou B+1s] TEALEVOIUT.GE.2) WRITE{ TUNDUT 60101 TRTMNTL(THETALN] 4N=1,NHYP}
QG0&6ROC 6010 FORMAT(LH 110,41G6F10.41

oOCAaR0 FFOLEVOUT.GEL5) WRITELIUNDUT  L000) Y EPS ISINY ZRINT THETAUIN) JCINI .~
ana7ono X N = 1e NHYP)

0007100 KOO0 FORMATL  3H Y=0512.%,5H EPS=6G12.5s 12H S4yRTHETALLC / -
0oQT 200 X (2%,4G)16.610) .

cooTINg CALL UPDATE
DOLTH00 [IF{T.EQ.1} RETURN 1
00CTS00 RETURN -

Q00G75600 ENTY



0000100
cgcoeco
Q0ac3co
0000400
0560500
0000600
oo0tooo
0001100
oog1300
001400
. 0001500
2001600
cnor 700
NOG1AROO
coo1900
agczZo0o
0002100
00G22n0
0002300
0oCz4ado
20007500
0QC4200
0004300
00044 G0
0004500
Q0004600
oocaino
ONG4asNo
00C4900
COC4350
0605000
0005100
ooesz2oe
000R300
0005400
0005500
nons 600
0005700
naaseo0
00CHa00
COCaONO

0aocl100
neogzo0
00¢0a00
nDCCaao
noooson
00CaT00
1360 ¢3534]¢]
Qra1sco
0CC1600
00C1700
Q0C1R0n
0CG2a00
onc2100

[alaKae el

¥

101 -

SURRDUT ITHE COUNT
COMMON/UNTTSY TUMTN, JUNDUT +MASK, LEVOUT
CDMHDN/ALPHIIALPHIIDOC},1IALPHISlZl.&LPHMUIiOGO}'P[hlHJ(JIZI -
GNPARAMUIO) , MUDELL Y PMUTLI0D0OY}
COMMON/CNTRLS/NHYP ¢ NALL ¢ NFACe NFULL ¢ NFULMY oy TRTMNT s NTREND, NDRS,LTRUF
COMMON/PROAS/THETAL 10, CS5TOP
COMMON/PREMNC/MNAVGELOQOT ,PCS e XMSEGXMSTAINTTAL + IHCNTY(10) ,HMSNFAR
COMMORFERR/TAU, 51GHMA

X4 = 0.0
HAVGI{NDBS) = NAVGINOBS) +1
M o= NPARAMILTRUE) @
JJ = MUDILTRUE)-1
DO 5 J=l.M
A o= Jd o+l
YM o= XMA{ALPHMUCJI)-REALMUL ) I e
CONTINUE

910
945

950

5000
X

XHMSE = SQRTIXM) + XMSFE

¥MST = SORTIXM:TAU}

KM o= SDRT{XHI

IF {LEVOUT.GT.1) WREITELIUNOUT 6000} NOBS, XM XHSTY

IMIN = O

CMAX=0D.0

0N 910 I=1,NHYP

IFITHETA(TI-CHMAX Y 910,910,905 -

CHAX=THETALI)

THMIN=]

CONT THUFE

CONTINUE -

IF (IMINLEQ.LYRUE} PCS = PCS+ 1.0

THCNTUIMINI={HCONTO TMIN) #1

IF (LEVOUY.LY.2) RETURN

N0 950 N=]1,NHYP

MULO = MuQ{nN)

MUHT = MUDIN+1) -1

WRITE {IUNOUT 6010 THETAINY L LALPHMUIL] L =HULO,MUHT)

CONT [NISE s

RETEN

FORMAT(Z22H #¢2&x2DRSERVATION NNOL 14 ,TH XMSE= Gl1.3%,7H XMST= G11,3 -
rAHT RS &R )

6010 FORMAT(IH F10.6 « 10G12.4/(27X10G12.4])1

END

SUBRDUTINE INVATX{ANN)

ASSUMES THF MATRIX A 1S SYMMETFRIC AND PDSITIVE DEFINITE, AND ONLY
THE UPPER TRIANGLE IS STNREN AS A ONE-DIMENSIONAL ARRAY [N THE
ORDER Adleldy A{L.21, AT2,20, 241430y AL2,3). A(3.3)s «4sy AlINyKNY,
NN TS THE ORDER N OF THE TRPUT MATRILIX A.

NIMENSION ATL}
D=1.0

k = NN

TTR1 = 0

Na 145 K=1,N

ITRI = ITRL+K-1



Qon22G0
00C2300
Qo240
Q002400
QoCc2700
0OC2800
Qaczano
00CIon0
gQCc3100
00103200
003300
Q0C3400
co0A500
0003600
o0Qe3To0
0003800
GOC3I00
Q004000
c004100
QCC4az00
Q0043L0
OR&400
oNCasnn
0004600
00Ca700
anc4g0n
00Cs900
0005000
Q0005100Q
COOR200
QoCHI00
QC05400
00C5500
aocs55600
Qocs 100
noosa00
00¢5900
0006000
2006100
- 0006200
0006200
00C6H4 GO
oooesa
QoC6600
QoDeT 00
COC&ADD
0oCea0n
20C7000
00C7100
0007200
caor3og
coo7400
apC7%00
00GTADD
aQooTI00
00cTA00
00C7e00
00GRO00
aocal 00

KPPl = K#%]

KMY = K-1

¥K = [THI+K

Py = 1.0N0/AtKK ]
fTrR2 = 0

CTF I®x-11 150.00,50

50

el

T0

90

9%

100

110

120

EENUCE TOP PART OF TRIANGLE, LFFY OF PIVOTAL COLUMNK
nee 60 Jd=1.8M41

ITR2 = 1TRZ+ -1

Kd = [TR1+J

F = AIKJF¥PY

o 60 T1+1.4J

1J = TTR2+I
1K = 1TR1 + | °
ALTJI) = AtEJY + ACIK]I®F

IF (K-N} T0,120+150

REQUCE REST OF TRIANGLE. RIGHT 0OF PIVDTAL COLUMN
ITRZ = ITR1L

DO 110 J=KPY LN

1TR3 = 1TR1

ITR2 = ITRZ4J-1

KJ = [TRZ4K

F = A{KJ)I%PY

Do 100 [=1,4

1€ ([-%1 90,100,95

1J = ITRZ+]

IK = [TRL + I

ALTY = ALTJY - ALIK)=*F
GG TQ 100

Id = [TR2 + |

1783 = TTR3 + I - 1

I = JTR3 + K

ALV = ALTJY - AlIK}=F
CONTINUE

CONYINUE

DEVIOE PIVOTAL ROW-COLUMN BY PIVOT, TNCLUDING APPROPREATE S1GNS
[TRZ = ITR1

00 140 1=1.N -

1F (1-K) 125+130,135

1k = FTR1+1

ATIK} = -ALIRI%PY

(REPLACE PIVOT BY RECIPRNOCAL)
A{KK] = PY

GO TO 40

ITR2 = [TRZ%]~1]

Kl = ITR2+K

A{KF) = AIKII*PY

CONTINUE

CONTINUE

RETURN “.
FND :



0pooLco
nocazre
GacHz00n
0000400
00C0500
oaeoRR0
a1GeG700
00 00R0OD
ococoang
anoinco
arclicao
coCci200
0nNGciL300
Q0014600
nnoLsed
L0C1A00
aoni7on
0001800
0QC1900
0002000
ong21 00
coczz2n0
0pGzZInD
0002400
00Q2500
Q002600
nnoz27To0
onO0ZBCO
0o L2900
Q0C3000
cOQ031 00
Q0g3zo00
0CC3300
anC3&enn
00C3s00
00L3A0D
Qo03700
0OCIRO0
0QGC3I9a0
Qo0&000
00Ca1 00
a004200
0004300
0004400
Q0C4a50D
0004600
000s7Q0
OC04R00

30

60

150

180

103

SUARNUTINE TRIANGIA (NN NKOL, FORMAT, TODUT]
DIMENRSION A{LY JFORMAT(1),100UTEL)
COMMDON/ UM TS/ TUNTN, TUNDUTY

FORMYAT (1 HK)

o= NK

NCOL = NROL

KLUGMPS = NSNCOL

KEEPTR = Q

K1 =1

K2 = NCOL - 1

K3 = NCOL °

FF {¥KLUPS JEQ. 01 GO TO 120
no 90 KLUMP=1,KLUMPS

ITR]1 = KEEPTR

I = -1

L0 = (KLUMP-11%NCNL 4 JTR1 + ]
DO 30 K=K1,K2

1T =1+1

ITRT = ITRL + K - 1

Lo = 10 + ¥ - 1

TH1 = ILOD + |
WRITETIUNDUT , FORMAT ) IDOUTIK L (ALIEJ=TLD, THT)
KEEPTR = ITRL + K2

D0 60 K=K2,N

ITRE = ITR]L + K -}

LD = 1L+ K -1

IH1 = TLD + NCOL - 1
WRTITELTUNOUT yFORMATITIDOUTIK) o (ACS) o J=8LOs1H]1)
K1 = K1 + NCOL

K2 = K2 + NCOL

K3 = K3 4 NCOL

WRITEL FUNQUT L}

ITR]1 = KEFPTR

TF IK)Y .GT. NY GO TO 180

I = -1

ILO = XKLUMPS#NCOL + IJRE + 1

DO 150 K=K1,N

I =1 + 1

FTR]I = 1TR]1 + XK - 1

1ILn = LD + ¥ - 1

FHE = 100 + [

WRITELTUNDUT ,FORMATY IDNUTIKE{ATJ) +J=1LO+THI)

FFTURN

END



coQo16n
200200
oacOlon
oenos0o
00€oseo
QCC0A0D
coon7ed
accoano
00C0%00
0001000
0oncli oo
0001200
0001300
0CCl400
2001%00
0001600
ooo1 700
QQoIA00
oeCl9co

200

250

300
500
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SUBROUTINE MTVEC{A PR NN,CI
DIMENSLTUN A{1F+BUI),CH{1)
N=NN

no 500 J=3N

CLsi=0.0
KADD ={{J-1t*h)/2
DO 200 K=1.4 e

KADD=KANND+]

CUII=CI{J} +A(KADDLI#RIKI
CONTINUE

Kl= J+l

IFIKL-N] 250,250+500

0O 300 E=X1,N

KADD= KADD#K-1

Cldi= CUy+ ALKADDI*BI{K]}
CONT ITNUE

CONTINUE

RETURN

END
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APPENDIX B
LIST OF SYMBOLS
the space of allowable experiments
the space of allowable experiments requiring ex-
actly oj cbservations
element of - A

the ith experiment in 4

 experiment in A performed at the jth stage of

sampling

vector of parameters appearing in combined model
equations

expectatién of the random variable + X

conditional expectation of the random variabie X
given the value of Y

entropy of the probabilities at state w

entropy of the posterior probabilities if system is
in state w and the value ; is obaerved

element of “H |

sigma field of Borel sets over (]

Q¢

density function of ; under model £ when is
glven and experiment a is to be performed.

marginal density function of ? "under model £

when experiment a is to be performed.

105
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3i(t¢|wi_1)

By

hi(zl,apn,zk)

osL{w,a)

L{w,a,1,j)

>

N(A)

NGi,T)

106° e,

density function of ;j+l under modeiﬂ 2° when a

and o are given

marginal density function of §5+1 under mod?¥ L
when a 1is given

density function of w given LAY

denctes ﬁypothesis L about the forﬁ of the model
equation

function of controlled variabies defining L

expected information in experiment a when state
of system is w

expected information for disériminating in favor
of Hi against Hj in'experimgnt a when stéte
of system is w

denotes subscript of hypothetical model with larg-
est posterior probability

true model equation number

upper limit on total number of observations

superscript of experiment performed at Stage j of
saminng

numbe; of model equations or hypotheses postuiated

Qesign matrix

design matrix for model. 4

numberlof elements in A

normal distribution with mean vector 3 and éré«

cision matrix T
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n vector of n, . : .

ni number of observations taken af,stage i

n(i,j) number of times experiment a(i) is performed in j
stages

Pr{x) probability of event X )

Pr{X|Y} probability of event X given event Y
2

limiting proporéion of times performed in an in-

Py

finite sequence of experiments
.2:Q;,Q, denote quadratic forms

RE i precision matrix of distribution of yj under model £
3

R{w,a) expected reduction in entropy if experiment a is per~

formed and state is w

gﬁdj mean vector of distribution of yj under model L.- .
- T precision matrix of distribution of € o '
W random variable defined over ¥

\ _element of fi. An observed value

X vector Of, X,

%, value of hi(zl’ . e .,zk)

xi,j value of hi(zl’ . . "Zk) at jth

y,; observed variable

zy controlled variable 1.

32 vector of parameters in model equation £

By coefficient of %,

Big) coefficient of Xy in model 4

©
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defined on page él

Kronecker delta function.

vector of aobservation errors

prébability model 1 1s correct

posterior probability that model i is correct after j
stages of sampling

stopping probability

mean vector of distribution of parameters in medel £,

density functicn of parameters in model £ after j
stages of sampling |

precision of distributien of ¢

precision matrix of distribution of parameters of model 1
after j stageé of'sampling |

state space of process. Defined on page 19

direct product of state space and observed variable space

vector of zeros

proportional to

determinant of a.matrix

approximately equal to

distfibuted as

includes
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APPENDIX C
TABLES
TABLE 1: - SIMMARY OF SIMULATION RESULTS PRESENTED 1IN TABLES 2 THROUGH 9
* % * - &
Model Paramcrer L=4,1i =2 L =4, 4 =3 L =6, 1 =3 .L=6,1 =35
number
100 500 100 500 100 500 100 500
obs abs obs obs ohs obs obs obs
1 5] o o] 0 O 0 0 4] o
2 Bz L9066 -9813 3] ] a [} .00 o}
3 93 L0232 .016 LG22 962 860 . B77 .902 L9411
4 BA 002 Releat -07& 038 ] . 107 . L0462 023
5 55 L022 .012 .07 .029
] 66 . D0G . 004 -009 .06
1 BO D.0971 (¢.08%1 0.1322 0.1377 0.1116 G.1357 0.0278 -G.G240
2 EO D.1010¢ 0.0951 0.1312 0.1384 0.1253 ¢. 1286 6.0316 0.0182
31 -498) L5025 L2485 L2522 L2411 o L2544 L5114 L4977
3 30 0.1013 0.0941 -.0070 ~0.0067 -0.0038 -0,00135 -0.0249 -0, 0099
' Bl L4981 L5025 V2478 L2525 L2493 . 2503 . 5086 5032
62 -, 0007 L0021 .2578 . 2634 L2157 . 2544 S1179 .0931
[ BD 0.1010 Q.0943 -0.0070 -0.0335 -0.0015 -0.0015 ~-0.0737 -0.0097
81 , 5029 L4915 L2497 L2418 L2572 L3428 L5168 L5046
B2 | -.0004 L0018 .2578 L2634 L2645 L2554 L1168 .0976
33 -.0076 L0112 -.0026 L0146 -.008% L0102 -.0083 ~. 0017
5 5 o 0,000 | ©.0015 | -G.0157 | 0.0001
81 . . 2564 L2440 L5120 . 5009
52 L2222 L2577 ~.0G20 L0227
53 .0G32 L0048 -.D0s8 L0024
Bh 360 -.0015 L0208 L0730
6 ED 0.4030 -0.0037 -0.0L80 =-0.0021
Bl L2390 L2559 L5037 LGb38
52 2291 L2619 L0603 ,G376
E] L0595 ~.0371 (438 L1340
&h 0301 -.0050 L0553 . 0593
55 -.0534 .034as ~.0413 -.0669

The column headings give the values of L and i* and the number of cbservacions. The rew headings
present the parameters whosc average posterior values are given. The prebabilities lisced Tar 10 ob-
servarions are the averages afrer [ive sipujations of 100 sbservarions and the values after rhe firse
100 observations ol the 500 ebservation simularions. The averages of the posterior paraserer means

are based only vpon the five full sirulations of 100 and 500 observations, respectively. The posteriov
probabilitles for 300 obsevvations are based upen five simulations of 500 cbservations each.
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TABLE 2. - L = 4, i =2

Mode] | Param Afrer 100 observations Afrer first 100 of 500 observaricons
1 9y 0 0 0 Q 0 4] 6] 0 0 o
4 8y 973 ] 979 974 .976 .875 - .97 976 L4931 977 .93
3 84 L0253 .019 .024 .023 024 L0213 .023 063 .02z .071
4 by 002 L 001 L0032 .001 .Q02 .00L . 001 . 006G 001 006
1 35 0.0795} 0.1017 | 0.09006 | 0.1271 | 0.0865 * * * & &
2 Bp D.1187 } 0.1017 t 0.0753 | 0,1032 | 0.1059 * * T * *
81 L5192 .5022 L4935 L5892 L4865
3 o 0.1263{ 0.1021 | 0.0682 | 0. 1067 | 0.1033 * * # % *
8} L5191 L5021 L4935 L4894 L4860
82 -.Q152 | -.0008 .04l | -.0069 L0635
4 Bo 0.1239| 0.1022 | 0.0688 | 0.1059 | 0.1041 * * * * *
Bl G858 L5044 L4771 .5188 L5288
B, -.0126 | -.0010 L0133 | -.0051 L0032
53 L0351 | -.0024 L0176 | -.0350 | -.0527
Py 0.25 0.23 0.23 0.17 0.19 0.18 0.23 0.27 0.21 0.25
Py Qg 0 ¢ 0 0 0 0 0 4] 0
Py .05 .05 .03 .17 .20 .24 .06 .04 .02 .01
Pa .02 .03 .02 .07 [ .0z .01 .01 .03 0
Py, .35 .20 .14 .01 W17 i .26 L42 .11 .25
Ps .06 .20 .27 14 .06 .12 14 .01 .19 .24
Pe .01 0 .06 .09 .02 .03 .01 .01 .17 o
y .05 .05 0 .13 21 S15 .06 02 .01 -01
Pg ] 6] Q 0 0 (] 6] 4} G o}
Pg .21 .24 .25 .22 ) .19 .23 W21 .26 .24

*
Not recorded.

=

The values of the posterior probabilitics and parameter means after ten simulations, of
L00 observations each, of the sequential selection procedore, The last - five columns arc
data from the first 100 cbservations of the 500 observation simulations tabulated in
table 3. The postcrior mcans were not rucorded for these cases. Also listed are the
proportions Py of the times each afl) was chesen as the optimal experiment.
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TABLE 3., ~ L = 4, 1" =
Model | Param | After 500 observations
1 81 it 0 0 0 0
2 8o . 991 985 . 990 . 991 .957
3 63 . 009 015 009 . 009 040
4 84 0 0 0 0 L003
1 ‘BO 0.0875 ] 0.0599 ] 0.0905 {1 0.0757 | 0,1317 |
2 BOI 0;0921 0.0984 | 0.0999 | 0.0942 | 0.0909
Bl 4964 . 5010 . 5028 5014 . 5108
3 BO 0.0923 { 0.1032 { 0.0984 | 0.0937 | 0.0827 e
Bl L4964, . 5010 5028 . 5014 . 5108
82 -.0005 | -.0096 L0029 .0012 L0163
4 80 0.0923 |1 0.1022 { 0.0985 | 0.0935 § 0.0850
81 L4948 . 4886 . 5043 4882 L4817
By -.0004 | -.0088 0028 0014 L0139
53 .0016 0126 | -.0017 L0141 L0293
Pp 0.234 0.264 0.236 0.236 0.228
P1 1] 0 0 4] 002
P2 050 010 056 044 0
P3 . 008 0 004 .008 0
Py . 280 22 302 306 076
p5 110 060 070 .088 418
Pg 018 0 026 L0786 . 006
Py 072 . 010 .088 038 002
Py 228 226 . 218 204 . 268

The values of the posterior probabilities and parameter
means after 5 simulations, of 500 cobservations each, of
the sequential selection procedure,

as the optimal experiment.

= e e = T e m aen v b pppeeea s et

Also listed are
the proportions p; of the times each

a (i) was chosen

—— e e e = e

— e -
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TABLE 4. - L = 4, 1" = 3 . )
Model | Faram Afrer 100 observations After [irst 100 of 500 observations
) I T o 0 0 0 0 0 0 o 0
= 2 3, | o 0 0 I 0 0 0 0 0 4]
3 9y .788 828 . 967 L066 L9586 562 .91e| .96al .sal | .920
11 c .21z L1772 033 024 .034 L038F .08% | .036f L0359 .080
] a2y 0.1140| ©.31343| 0.1260 | 0.1292] 0.1368 * * % x *
2 Eq o.11820 p.1s15| 06.1255 | 0.1285| O0.1324 * * h x *
8, L 24652 .2533 2185 L2575 L2482
3 80 ~0.0043 | ~0.0089 F -0.0159 [ 0.0104] -0.0152 * * * * &
51 L2467 L2510 L7139 L2552 2470
£ L2163 . 2939 . 2683 2216 L2788
4 fg -0.0045 | ~0.0091 | -D.0158 | 0,0103| -0.0162 * * * * %,
£ .1838 1095 L2395 L2633 .2523 -
G L2268 L2943 . 2681 2215 L2788
Bq ,08331 -.07729| -.0009 | -.0107§ ~-.CO70
By 0.18 £.17 ¢.17° 0.17 0.17 0.18 | 0.17 [ 0.17 {0.17.]0.17
Pl ] ¢ o 0 0 0 0 o o o
0y .32 3 .30 .30 .29 .32 .30 .3g .31 .30
L Py 0 .01 0 .02 0 0 ] 0 0L .02
‘ Py o 0 .03 n .02 0 .03 0z to 0 -
75 .03 .01 .02 .03 .04 .02 .0z 02 | ..00 .05
Pe 0 0 .0l .02 0 .01 |0 0 0 .02
?7 .30 .32 .30 .28 .30 .30 .3 .31 .32 .28
g o 0 0 o o 0 @ 0 0 0
vy 17 .18 .17 .18 .18 .17 17 .18 .18 .16

The values of the posterior probabilities and parameter means after 10 simulations, of 100 ob-
servatious each, of Lhe sequential selectien procedure. The last $ columns are data from the
ficst 100 obsorvations of the 500 observation simulations tabulated in table 5. The posterior
means for these 5 cases were not rabulated. Also listed ave the proportions pj of the times
each ali) was chosen as the optimal experiment.

Sernde FF
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TABIJE 5 s L = 4 » i = 3
Model | Param After 500 observations
1| 8 | oo 0 0 0 0
2 o, | 0 0 0 0 0
3 85 .953 .982 .953 1969 (954
4 6, 047 .018 .G47 .031 046
1 | 8 0.1368 | 0.1385| 0.1383| 0.1394| 0.1354
2 By | 0.1376 | 0.1398| 0.1391| 0.1387 | 0.1369
By <2561 |° .2463 | .2608| .2550 | .2426
3 By | -0.0227 | 0.0085| -0.0069 | -0.0028 | -0.0096
By 22566 | .2469 | .2601| 2546 | .2434
8, L2906 | .2392| .2648| .2548 | .2677
4 Bg | ~0.0227 | 0.0085 | -0.0069 | -0.0028 | -0.0096
By .2355 | .2385] .2399( .2715 | ,2225
B, .2905 | .2392| .2649| .2548 | .2678
83 .0281 | .o0112| .0281| -.0223| .0277
Po 0.178 | 0.178 | 0.178 | 0.178 | 0.178
P | O 0 0 0 0
Py (322 .320 .320 (318 .318
P 0 0 0 .002 .004
p, | O .006 004 | 0 0
ps 004 . 004 . 004 .002 .010
Pe 002 | o 0 o 004
P .318 .318 .318 .320 312
Py 0 0 0 0 0
Pg .176 (174 .176 .180 174

The values of the posterior probabilities and parameter means

after 5 simulations, of 500 observations each, of the se-
quential selection procedure.
p; of the times each
experiment. -

tions

a

Also listed are the propor-
(1) was chosen as the optimal
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TABLE 6, - L = B, i* =
Model | Param afrer 1BO ohservations After first L0O of 500 observations
1 9 0 0 G 0 0 g 0 0 0 o
2 g, 0 0 o 0 a o 0 0 0 o
3 4 L8554 L9564 V7630 L5093 L9432 L2733 L9534 L9471 L8440 L8554
4 Y .0373 L0365 L1756 0738 L0469 -5534 .00 RiETaS LU457 | L0378
5 b5 L0052 L0035 L0451 L0130 L0075 L1168 L0050 L0070 Q075 LQ0a2
6 g L0016 L0017 L0162 L0034 -00Z4 L0364 0016 L0015 L0010 S0G1E
i Bg 0.1567 | 0.1026( 0.0891| 0.083% | 0.1259 * * w * *
2 Bo 0.1298 | 0.1197 [ 0.1192) D0.1118 | 0.1462 * * * * ®
g .2696 | .2258 L2131 L2472 .2527 '
) s
3 2y -0.0116 | 0.0098| -0.0332] 0.0004 | 0.01546 * * * ® *
gy 2564 . 2354 L2396 12542 L2607
By . 2BB? L2282 .3290 ,2329 L2403
4 84 -0.01:0 | 0.0098( -0.0317} -0.0008 | 0.0161 = * * * *
8y L2421 L2427 L3033 L2117 . 2854 -
Ba . 2877 .2282 L3268 L2346 L2453
By .0189 | ~.0099| ~.0846 J056% | -.0341
5 Bg -0.0056 | 0.0200| -0.0082| ~0.0175 | 0.0314 * # * L *
8 .2458 , 2403 L2870 L2732 . 2855
8o L2562 . 1692 -1788 L3427 L1641
By COLGE | - G080 --0876 L0432 L0335
figy L0271 -g512 L1288 -.0986 L0654
3 BO ~0.0061 | 0.0209 [ -0.0130] ~0.C166 | 0.0300 * * * * *
£y . 2429 L1945 L3250 L2050 .2278
fa L2583 L1767 L1921 L3418 L1767
fig L0263 21913 -.2368 L1214 . 1958
By L0254 \0432 -12031 -.09688 L0584
Bs ~,008% | -.1555 .1320¢ -.0609 { -.1739
Py 0.13 0.15 0.15 G.17 0.&7 0.18 Q.10 0-11 Q.17 .13
Py .02 .08 .03 .06 .10 .01 .D4 -1l 12 .02
Py .17 24 .32 .27 2% -37 -12 .12 .20 L7
Py .08 a3 0 c N2 0 .05 .02 .02 .08
Py .06 03 -02 .07 .01 .01 .07 .14 .07 .0a
Pg .03 03 .07 .03 .05 0 Wil .02 .04 .03
Pg 4] 12 .14 W14 .02 06 .02 .08 .07 o]
P37 .29 17 211 .09 21 .26 16 W15 .15 .39
P .05 .02 .01 .05 .04 1] 16 -12 -04 03
Pg .17 .13 .17 .12 AL 16 17 .15 12 17
*
Kot recorded.
The values of the posterior prebabilities and parameter means after 10 simulatinns, ef 100 ebser-

vations each, of the sequential selection procedure.

100 observarions.of rthe 500 observation simulations tabulated In tahle 7,

were not recorded for these 5 cases.

chasen as the aptimal experiment.

The Iast S columns are data Fzom the MNirst

The pesterior means

Also listed are the proportions of the times each

all) wag
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TABLE 7. - L =6, 1 =
Model | Param After 500 observations

1 81 0 0 0 0 0

2 Bq 0 0] 0 0 0

3 Bq L6046 L9812 .g722 L9746 .8526

& 84 .3388 L0175 .0257 L0230 L1316

5 05 L0425 L0009 L0018 0021 L0125

6 8¢ 0141 L0003 L0003 L0003 .Q032

1 Bg 0.1321 0.1378 0.1325 0.1349 0.1413

i Bo 0.13506 0.1278 0.1247 0.1168 0.1383
Bl L2434 L2616 L2541 L2549 L2581

3 fo ~-0.0026 0.0067 | -0.0066 | ~0.0021 | -0.0029
81 L2446 » 2556 L2486 . 2466 . 2571
By L2547 . 2336 L2605 L2615 L2622

4 B -0.0027 0.0067 | -0.0067 | -0.0017 | -0.00C30
Bl L2076 . 2515 . 2340 L2341 L2872
82 2544 L2335 . 2608 . 2609 L2623
By L0491 L0055 .0194 L9167 -.0399

5 > SO -0.0113 0.0077 0.0111 0.0063 | -0.0062
El L2081 .2518 L2332 L2394 L2873
By .2926 ‘ L2279 L2845 ~2061 L2774
83 0486 0052 .0203 .0101 -. 0401
BQ -.0300 L0049 -.0200 0496 -.0121

6 B -0.0118 ¢.0647 | -0.0100 0.0081 t-0.0073
Bl L2164 L3128 L2432 . 2386 L2682
By L2949 . 2455 L2801 L2070 .2819
iy L0130 -. 2307 -.0225 0134 . 0405
By -.0317 -. 0098 -.0168 . 0490 -.0155
By 0270 L1773 .Q328 -.002¢6 -.0618
PO 0.178 0.135 0.148 0.116 0.168
Py .04 064 L0028 .070 012
Py 314 . 206 L1498 L0856 .282
Py .004 .036 .092 112 .018
Py .010 .014 .038 .110 LOL4
Py 0 .092 .014 .024 016
Pg .022 004 .012 022 .002
P5 . 296 .190 . 280 . 288 L3304
Pg 0 . 104 .026 .0Ll4 QL0
Pg L1372 . 154 164 .158 174

The values of the posterior probabilities and parameter
means after five simulations, of 500 observations each, of
Alsa listed are rhe

the sequential sclection procedure.
ali) was chosen as the opti-

proportions of the times each
mal experiment.

R A
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CTABLE B. = L = 6, i* =
Model | Pavam After 100 observations After first 100 ¢f 500 observations
1 G] 1] 1] o Q0 0 [V 8] 0 o
2 9? 4] 0 0 L0721 L0412 a 011 003 L026
3 83 L9435 L9462 556 .855 .B4B L9473 .a17 852 904 LB57
4 8, 043 L 043 .038 063 L0427 .048 .1o6 .089 .070 076
5 05 . D07 .012 005 L0115 (433 007 .013 035 .018 L028
6 . 96 . 004 L003 001 .006 D35 L0022 004 013 .00 L3al13
1 i 0,1502 [ -0.0299 0.0231 | ~0.0079 0.0034 * * * * *
2 BO 0.0356 0.018% 0.0288 0.0316 0.0431 * * * * ®
£ . 515% L5101 L5123 L5079 5106
k| Ba -0.0348 ¢ -0.0413 | -0.0412 | -0.0098 Q.0020 # * * * #
8y . 5040 L5077 . 5096 . 5084 .5133
82 L1467 L1265 L1478 .0837 L0550 |=
4 60 -0.0333 | -0.0396 § -0.0414 | -0.0070 0.0024 * * * * *
£y LABT4 . 5788 L5019 L5513 L5146
Ba , 1450 L1252 L1478 .DEI0 L0849
33 0217 ~.0261 . 0099 -.0456 -.0016
5 BO -0.0232 ] ~0.0242 § -0.0431 | ~0.0041 | 0.0161 * * * * *
] LA985 L5201 . 5039 L5516 L4861
fy L0642 -.0063 1616 L0184 -.1250
83 L0101 ~-.0185 L0074 -.0463 .0235
By 0774 L1223 -.0131 L0805 - 2068
6 SD -0,0298 | -0.0234 | -0.0435 | -0.00a7 0.0135 * * * S *
3y . 6005 . 5398 L5233 L5143 L3504
Ba L1187 -.0130 L1655 L0517 -.0226
B4 ~.3884 ~. 10438 -.0708 L1797 L6034
84 L0292 L1270 -.0167 L0301 L1071
bg . 3037 L0673 L0599 -.1893 -, 44832
Py 0.10 0.16 0.14 0.24 0.18 0.18 .14 0.17 0.18 .22
Py 0% .06 .07 .02 .13 .25 .04 .02 .0l .01
Py .08 .20 W13 .al .03 .06 .17 04 .25 .02
Py .04 .05 .07 .07 .02 .01 .06 .01 Q3 ] 0
Py .08 W13 .08 .26 .18 .16 06 .10 .10 .05
Pg .08 .08 .10 .12 -19 .07 .17 .25 .0a VA1
Pg .08 .04 06 .02 .03 .03 Q .14 .01
Py 11 .10 .09 .02 .05 .09 .19 .19 .05 .02
Py .22 .02 .10 D .0l .06 .Q3 .01 .01 O
Pg .16 16 W14 .21 18 .09 .14 .21 Y .26

ES
Not recerded.

1

The values of the posterior probabilities and parameter means after 10 simulations, of 100 ob-
servations each, of the sequential selection procedure.
First 100 observations of the 500 observation simulations tabulated in table 9.
are the proportions ol the times each

a 1

was chosen as the oprimal experiment.

T T TITT

et e g ot e

el T P

The last 5 columas are data from the
Also listed

T .
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Madel | Param After 500 observations

1 01 0 2 0 0 0

2 82 0 0 Q 0 0

3 83 L974 882 . 899 .976 L8976

4 84 020 024 .029 .021 022

3 65 .003 L0735 062 .002 002

6 86 .002 .020 009 0 0

i3 SO -0.1051 0.0255} ~0.0926 D.0130 0.0390

2 BO 0.0290 0.0373 0.04306 0.0351 0.0458
Bl L4860 L5032 L4903 . 5038 .5053

3 80 -0.0181 | -0.0137 0.0018 | -0.0258 0.0065
Bl . 5016 L5008 L5019 L5056 . 5061
82 L1075 L1046 803 L1189 L0791

4 BO -0.0179 | -0.0142 0.0027  -0.0257 0.0066
Bl . 5035 L4859 L5201 L5177 L4956
82 L1071 1050 0782 L1187 L0790
53 -.0025 .0198 -.0237 -.0160 L0138

5 nBO ~0.0100 0.0012 0.0159 | ~0.0202 0.0136
Bl L4659 L4940 L5016 L5169 L4962
82 o .0413 ~.0152 ~.0328 L0897 L0306
83 1 L0061 L008L 0 -.0151 0129
84 L0653 L1185 .1116 L0241 0455

6 BO -0.0166 | -0.0044 0.0157 | -0.01886 0.0135
Bl L4232 G352 L4617 .5039 L4940
82 0891 L0094 -.0250 .0835 L0309
B4 L2801 . 2087 .1232 .D400 L0179
Beg 0224 .0996 L1030 .0288 452
13 ~-. 2070 -. 1452 -.0854 ~.0430 -.0039
Po 0.158 0.106 0.208 0.174 0.132
P .252 .190 314 .010 .128
Py . 108 054 016 .306 . 138
P3 040 .052 014 L0006 008
Py 170 . 184 L 100 .020 L 104
Py .022 034 114 .030 L0388
Pe (356 ¢ 0 072 L0002
Py Q74 .134 .052 L2008 172
P 0386 .118 .110 022 092
Pg 084 .128 072 152 132

The values of the posterior prebabilities and parameter
means after five simulations, of 500 observations each, of
the sequential selection procedure, Also listed are the
proportions of the times ecach a(i) was chosen as the op-

timal experimentc.

Aot
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TABLE 10. — LARCE SAMPLE STUDY TWO

Modi 1 } Param 30 w (0.1,0.2,0.3,0.48) ED « (0.25,0.25,0.25,0.25} 3b = (0.4,0.3,0.2,0.1)
5 simulations Averape 5 simulations Average 5 glmulations Average
1 oy 0 o] 4. 0 0 0 o 0 Q & ¢l bl ¢ 0 o 0 0 g
2 8, 0 o 4 0 0 0 0 0 q ¢ c 0 0 0 o 0 0 o
3 by JB37 2947 .828 .925 . 960 1924 969 .96% 866 967 2930 .960 .984 979 .976 957 .934 -97¢
4 £, L0643 .053 172 074 040 076 Q31 .031 L034 .033 070 . 040 .01% 021 024 043 016 .024
1 N -0.0338 | -0.0460 | .0015 [~0.0287 | ~0.0125 ] =0.0238 | ~0.Q413 { ~0.0230§ -0.0204 | -0,0501 | ~0.0172 | ~0.0304 | ¢.0392 | 0.0028; G.0045 ] -0,0195| 0.0130 { 0.0090
—
2 o -0.0333 ] -0.0460 [ 0.0015 f~0.0282 | -0.0125] ~0.0238 | -0.0413 | -0,0230§ ~0.0204 | -¢.0501 | -C.0172 | -0.0304 [ 0.03%2 | 0.00281 0.0043 | -0.0195| 0.01830 | 0.06020 a0
8y 1.0044 9510 .9938F  .9989 B4 L9BE5 | 1.0142 L97791 1.0510 | 1.0487 L9697 | 1.0i2 L9484 | L.g213 ) 1.0603 L9906 .9014 L3964 @
i) B4 -0.0338 | -0.0460 | 0,0015 [-0.0262 | -D.0125| -0.0238 } -0.0413 } -0.0230 | -0.0204 | -0.0501 | =0.0172 | -0.03G4 { 0.02%2 | 0.0028 | 0.0045|-0.0125| 0.0I80 ; 0.0090
By 1.0044 L9810 ¢( ,5938 L9989 L9644 -9885 | 1.Dla2 L9779 | 1.0510 | 1.pD487 19697 1.012 L9484 | L.0213 1 1.0603 L9906 9614 L9954
£y -1.0555 | -1.0012 ]} ~.95%4 |-1.Q026 | -.9%48 [ -1.003 -.9753 | ~1.02051 ~1.0208 | -1,0139 | ~.9762 | ~1.001 ] -.945L | —-.9535 -1.0253 } -.933G | -1.00L2 | ~.9718
4 £y -0.0338 { -0.0460 } 0,0015 |-0.0282 [ -0,0125 | -0.0238 } -0.0413 | -0,0230| -0.0204 | -0,0501 | -0,0172'| ~0.0304 | 0,0392 | 0.0028 0.0045 [ -0.0195| 0.0180 { 0,0090
3] 1.0044 .9810] .9938 \998Y 9644 L9885 | l.pis2 S9F79F L.0510 | 1.0487 L9697 { 1.012 L9484 | 1.0213 1 L.0603 L9906 L9614 L9964
Ba ~1.0555 [ ~1.0012 3 -.9594 |-1.0026 ¢ -.9948 | ~1.003 -.9753 1 -1.0265] -1.0208 | -1.0129 ] ~.9752| -1.001 | -.945% | =.9335 | ~1.0253 [ =,9339| ~1.0012 | -.971%
£3 0110 ¢ - 0236 L0504 L03551 -.0016 L0158 -.0012 | -.0052} -.0152§ -.0121 L0418 .anle Lo0Le | -.022% L0290 [ - 0456 0,0087 | -.0050

The valued of the posterior probabilitles and parameter means after five simulations, aof

pri.v discributions on tie models.

500 obaervarions each,

of the secquential selection procedure with

three differen:
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. TABLE 11, - LARGE SAMPLE STUDY THREE
Lt
Mudel | Pacamecer 1 = 100.0 T 1= 1.0 T = 0.01
5 simulations Avg 5 simulations Avg 5 simulations Avg
1 2y 1 1 1 1 1 1 1 L 1 1 L 1 0.5979 7 0.3155]|0.9999 | 0.8951 ] 0.9990 | 0.9415
2 0y 0 0 a a ¢ Q 0 o ¢ 4] 0 0 -0006 L8431 0 oot -0004 -0373
1 94 9 Q Q 0 Q ¢ o 0 2 o 0 0 0015 L0002 L0001 L1077 . 0006 -az212
K 1 8p 0,953 1 1,027 [ 1,094 0,979 | 1.106 | 1.032 | 1,111 1,091 1,046 JANE [ 0,932 [ 1,086 [ L.415 | C.454 L4231 | 0.916 10,904 | 0.932
] gy L0693 1,046 | 972 1.067 979 1.027 | 1.008 (B0 957 JBUC| LBTA | L906| 1,093 11,274 ) 1,318 632 i.lad 1.u97
B : Ha L9841 1.039 L9971 .907 11.033 .992 862 JOL0 | L2l L B22( 1,160 593 ] 1.163 2342 | 1,607 1.11% 1.193 1. 113
E : 2 g 1,230 0 1.256 ] 1.298 ) 1,262 | 1.295 ) 1.268 | 1.135| 1.075 | L.567 | 1.281 ) 0.527 | 1.137 | 1.413 | 0.4%4 [ 0.754 [ 0.914 }0.904 | C.888
o By 1.559 1 1.564 | 1,469 1,520 | 1,494 | 1,521 1,030 .91t | 2.009 .816 [ .907 L8935 | 1122 i.275 1.8 073 1.172 L.112
o 53 770 L 746 702 L7318 L7005 . 132 039 .01% L0038 -.020 .219 .05%9 074 154 L0311 L20% 014 695
il Ho L7421 L7746 F 4,788 1.754 [ 1796 | 1 9710 L322 11081 1.002 1 1,306 0940 | 1.096 1 1.415 | 0.418 L.221 | 0.916 | ©0.906 | 0.972
A 1.515| 1.559 | 1.480 ) 1.478 | 1,520 1.3502 -882 JB28 1 1246 L8421 101590 L.OLL | 1,184 612 1.607 L.121 1,128 L. 145
By L2058 L2256 .12 L2206 204 V229 | =048 013 | -.041 ) -.048) L057 | -.013 056 .30L L005 085 .02 L0492
Kumber ul 1 3 3 3 a 3 49 a7 3% .1 59 52 49,2
trials until
ﬂl.j = 1.0
Thi* posterinr probabilities and posterior parameter means alter five simulations of the gequential selection procedure Fer three difforeat values of 1.
For ¢ = 100.0 and ¢ = 1.0 the number of crials until 01 += 1.0 {within the accuracy of the computer)} is alse tabulated, For 1 = 0.01 cthe
. valoes gice based upon 1000 observatlons. 4
i .
E
o
‘ ‘

i e ST

BTT



o

120

TABLE 12. -~ SMALL SAMPLE STUDY ONE (H3 TRUE)
[hax —.8]
8 T E PCS ASN Starting value
m 3,0 .
for random seq.
0.70 0.5 (0, O 0.133 6.36 *
.70 <5 (0.5, 0G.5) 458 7:.15 041. 574 501 221
.70 ¢S (1.0, 1.0) 544 6.82 261 404 147 531
.70 ¢ 5 (1.5, 1.5 446 5.89 251 233 175 021
80 <5 (0, O 173 7.50 265 603 111 06l
. 80 e 5 (0.5, 0.5) A68 7.78 237 616 233 015
.80 <5 (1.0, -1.0) 531 7.52 066 231 644 355
.80 | .5 (1.5, 1.5) 460 | 7.24 ) 124 715 646 251
<90 .3 (0, 0) . 229 7.98 202 255 025 241
.50 <5 (0.5, 0.5) . 479 7.92 020 625 757 465
<20 <5 (1.0, 1.0) <513 7.81 154 510 176 555
<90 <5 (1.5, 1.5 <439 7.76 043 355 261 141
<710 1.0 {0, 0) . 397 5.49 031 264 722 101
70 1.0 (0.5, 0.5 .673 5.88 142 153 215 61l
« 70 1.0 (1.0, 1.0} . 737 5.29 025 206 250 121
.70 1.0 (1.5, 1.5) 621 4.84 244 233 735 061
<80 1.0 | (0, O .558 6.90 337 020 177 205
.80 1.0 (0.5, 0.5) -755 6.94 361 341 044 651
. R0 1.0 (1.0, L.0) 771 6..50 231 737 436 405
80 1.0 (1.5, 1.5) 700 6.22 107. 152 460 271
.90 1.0 (0, 0) 605 7.80 316 753 345 645
90| 1.0 (0.5, 0.5 <765 7.45 042 264 053 551
90 1.0 (1.0, 1.0) 777 7.15 304 456 707 705
.90 1.0 (1.5, 1.5) .689 7.12 324 670 521 455
70 2.0 (0, O 699 4.24 034 773 264 025
.70 2.0 (0.5, 0.53) 871 4.03 361 656 711 721
70 2.0 (1.0, 1.0 .877 3.62 110 151 661 121
.70 2.0 (1.5, 1.5) .723 3.48 000 766 306 641
.80 2.0 1 (0, O ‘ .868 5.45 020 542 277 271
.80 2.0 (0.5, 0.5) .962 4.99 073 755 766 635
.80 2.0 (1.0, 1.0) .970 4.63 013 527 071 701
.80 2.0 (1.5, 1.5) 872 4.61 0al 3554 522 311
.90 2.0 {0, O 944 6. 46 001 231 353 331
<90 2.0 (0.5, 0.5) 967 5.66 361 503 Zu5 415
<90 2.0 (1.0, 1.0) 969 5.48 151 650 040 04l
<90 2.0 (1.5, 1.5) .939 5,80 233 434 565 701

*Not recorded.

Resulting- PCS and ASN values for

of 0p,

the procedure for each combination.

L Pt W an L3 ° v - .Vl-

i JIMax = 8- and the combinations
1, and u3,Q: Results are based upon 1500 simulati ons of
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TABRLE 13. - SMALL SAMPLE STUDY ONE (H3 TRUE)

{JMAX 16}
] T ? PCS ASN Starting value
m 3,0 .
for rvandom seq.
0.70 0.5 (0, O 0.354 9.48 272 036 225 481
<70 ] (0.5, 0.5) 665 10.7 057 343 345 741
.70 o3 (1.0, 1.0) +723 9.63 073 144 502 151
=70 -5 (1.5, 1.5) ¢ 555 7.38 231 500 657 525
.80 -5 (0, O - 508 13.6 033 254 034 051
.80 <5 (0.5, 0.5) 761 13.3 225 553 740 341
<80 -5 (1.0, 1.0 . 806 i2.3 134 537 257 651
-80 <5 (1.5, 1.5) 661 11.8 251 356 646 745
.90 +5 (0o, 0) « 574 15.5 056 537 424 615
.90 .5 (0.5, 0.5) 752 14.6 246 632 674 651
.90 «5 (1.0, 1.0) .B0O | 13.9 140 077 157 311
- 90 «5 (1.5, 1.5) 710 ¢ 13.8 044 035 362 005
.70 1.0 (¢, O « 548 6.53 173 052 463 251
70 i.0 (0.5, 0.5) .821 6.82 063 364 104 441
<70 1.0 (1.0, 1.0) .825 6.09 ¢ 233 034 770 255
<70 1.0 (1.5, 1.5) 637 5.36 017 237 125 325
-80 1.0 (0, 0) .308 9.48 275 264 535 015
.80 1.0 (0.5, 0.5) 971 9.30 015 352 360 3531
L8081 L0 (1.0, 1.0) .961 8.16 017 142 770 505
.80 1.0 (1.5, 1.5) <865 7.86 004 724 275 765
.90 1.0 (G, 0) . 927 12.1 161 027 043 101
.90 1.0 (G.5, 0.5) 973 10.8 101 732 737 651
=90 1.0 (L.0, 1.0} 964 10.1 016 351 614 135
.90 1.0 (1.5, 1.5) 958 10.6 171 716 572 235
.70 2.0 (0, 0} 700 4,25 073 021 660 321
70 2.0 (0.5, 0.5} .878 4.17 003 466 340 375
70 2.0 (1.0, 1.0) .855 3.59 337 170 131 645
<70 2.0 (1.5, 1.5) 714 3.51 055 666 256 215
.80 2.0 {0, 0) 911 5.67 037 537 412 725
<80 2.0 (0.5, 0.5} . 990 5.12 111 525 350 761
-80 2.0 (1.0, 1.0) . 988 4,84 003 413 673 201}
80 2.0 (1.5, 1.5} 894 4.71 055 643 644 455
.90 2.0 0, O . 996 7.13 374 543 153 375
.90 2.0 (0.5, 0.5) 1.00 6.257| 133 225 727 441
.90 2.0 (1.0, 1.0} 1.00 5.94 332 405 117 171
.90 2.0 {1.5, 1.5) . 995 6.20 010 312 536 461

Resulting PCS and ASN values for Jypx = 16 and the combinati ons

of 6y, 1, and . H3,0 Results based ﬁpon 1000 simulations.
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TARLE 14, — SMALL SAMPLE STUDRY TWO (H2 TRUE)

Tyax = 8
8 T » PCS ASN Starting value
m - 2,0 .
for random seqg.
0.70 0.5 (1.0) 0.760 7.86 052 516 237 355
80 5 (1.0) 734 7.98 0l6 160 602 721
.90 .5 (1.0) . 740 7.98 245 577 171 655
.70 1.0 (.5) .828 7.63 1 321 722 414 631
.70 1.0 (1.0} .B82 7.20 340 3212 470 071
.70 1.0 (1.5} 800 6.86 | 360 415 546 645
.80 1.0 (1.0} B72 7.98 273 760 237 431
<90 1.0 {.5) . 880 7.97 006 761 404 315
.90 1.0 (1.0) . 898 7.98 331 151 347 271
.90 1.0 (1.5) 832 7.99 372 024 174 011
<70 2.0 (L.0) » 900 5.13 004 415 604 245
.80 2.0 (1.0) .936 7.89 063 456 575 211
90 2.0 (1.0) . 934 7.98 065 654 bl 223

The PCS and ASN values resulting from 500 simularions of the
sequential procedure for each of the tabulatred combinations
of 6 ,-1, and y .

m 2,0

T B s B e e e o




TABLE 15. ~ SMALL SAMPLE STUDY THREE (FOUR MODEL PROBLEM)

i ASN Startlng value

n
. for random seq.

0.70 1.0 {0, 7.55 %

.70 1.0 ©, 7.10 006 171 767 411
.70 1.0 (o, 5.74 113 071 707 045
+70 1.0 (1, 6.40 032 457 065 345
.80 1.0 (0, 7.91 315 037 701 221
.80 1.0 (0, 7.67 070 131 010 071
.80 1.0 (0, 6.73 044 541 754 365
.80 1.0 (1, 7.31 034 264 602 535
901 1.0 (0, 7.99 175 260 740 521
.90 1.0 (aQ, 7.91 000 247 732 655
.90 1.0 (0, 7.51 276 504 634 101
=20 1.0 (1, °7.81 243 240 621 255

%

Not recorded.

PCS and ASN values resulting from 1000 simulations performed for

the indicated combinations of Bps ¥, and ﬁ3,0;
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TABLE 16. — CODED DATA FOR SAMPLE PROBLEM

"(DATA TAKEN FROM DRAPER AND SMITH)

zl Zq Zy Z ¥
-75 0 0 -65 1.4
175 0 0 150 26.3
0 0 -65 150 20.4
0 0 165 -65 9.7
0 0 0 150 32.9
-75 -75 0 150 26.4
175 175 0 ~65 8.4
-75 -75 -65 150 28.4
175 175 165 -65 11.5
0 0 -65 -65 1.3
0 0 165 150 21 .4
0 -75 -65 -65 A
0 175 165 | 150 27.9
0 0 0 | -65 3.7
0 -75 0 150 26.5
0 -75 0o | 150 23.4
0 ~75 ¢+ 150 26.5
0 175 0 | -65 5.8
0 175 0 , 65 7.4
0 175 0 -65 5.8
0 -75 -65 ;150 28.8
0 ~75 -65 | 150 26 .4
0 175 165 I -65 11.8
0 175 165 | -65 11.4




TABLE 17.

iZ5

poyds DATA OF TABLE 16

crnear 3 OF ANALYSIS OF EQUATION (7-1)

WSRRINPE S

Term of Eepinztzi t-statistic Descriptive
model coeffics =nt significance
level
2, 0.112 28.4 0.999+
232 —, 354FT 6.8 L9994+
z9 Laz2ap-l 3.4 . 986
23 ,2358~1 2.5 .955
2] 33924 2.1 .920
2124 - U16E~3 1.9 ,890‘
z% , 7OSE~4 1.9 .886
z% -, 12883 1.6 .836
2125 ~-,3398-3 1.2 717
z123 -.669}_7:"4 «9 576
z% ,7058~4 .5 .367
2923 .3320~4 .5 347
. 292y, .1?813"!4 .3 217
R% = 0.988
e = 3.25

Residual mean syuar

Replicaticn mean #quare = 1.85

F

_ Lack-of-fit mean_square

~ Repiication menn squale

2.90




TABLE 1l8a.

y

1

B

8

0

0

+

+
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-~ THE MODELS FOR EXAMPLE 1

B.z, + B,z z, + ¢

174 27374

174 T Ba%3%y

8321 + 8422

Biz, T By23Z,

+ 8523 + £

37y t Buzp t Bg2g

Bz2+622

g%y t Bg2q ¥ BgEi7y

822324

Rz, + B

2
B z2.+ 8723

2
Bgzy + B10%1%

B1q257, + B147,

+ 882

+ €

4%t BsZ3

174
+ BiyZ1%3

+ £

+ B

12%2%3



PR

o
¥

1,0
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It

P30 7

|

1.215%10
9,791+107 <}
-2.650x10™%

1.064 10
1.113 1071

-3.258 1074
2.211 1073
1.761 1072
1.066 1072

11.76 ﬁ
-1137

~.3376x1073
,3322%10~2
.3114%10"1%
.1768x107%
~.1158%1072

-.6788%107%
~.1076x1073
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0

TABtE 18b. - THE PRICR MEANS FOR EXAMPLE 1 -

12.70

L1119 .
.3562x1073
.3194%1071

", 3226v10™L

I

0

.2354x107 %
L1512»10-3
\1277%1073
L4164%1073
. 7045%107%
.3393%107°
.6690x1074
.3323x1074
.1785%10"

!




Row
Row
Row

Row
_Row
Row
Reow
Row
- koW
Rew
Row
Row
Row
Row

Row
Row
Row
Row
Row
Row
Row
‘Row
Row

Row
Row
Row

TARLE 1Be. - TRE MATRIX FROM WHICH WR

24.00000
1020. 000
-23950.00
300. 0000
800. 0005
€00, 0000
290000, 0
135700.0
-14125.00
108730.¢C
72560.00
33750.00
13300 .0
~127250.0
0

0. 775625E+10
0.353012E+10
~0.82312B1E+09
0.193906E+10
D.19390UBE+L0
0.911719E+09
0. 366587E+10
-0, 2050165410
0

0. 343012E+10
-0.3GBL36E+09
Y

320700.0
0.381425E+07
~14125.00
-127250.0
-23930.00
-0.3B0000F+07
0.3074758+07
G.172438E+07
0.193437E+07
-0, 2293756407
-0.114562E+07
577500.0
~0.301625E407
0

0.435431F+10
-0,357216E+09
0. 857531 E+09
0.857531E+05%
0.806719E409
0. 3226878410
=G, 336394 E4+0%
o]

0. 2504508410
0

128

0.210118E+10
0. 1145625407
577500.0

0.3074755407
-0.3681565+09
0.506112E408
0.231684E+09
-0. 3832978409
0. 383297E403
-0. 3572165409
-0. 336395E4049
0.136534E+10

0

0.122473E+10

C.B046BBEHDT

-0.823281E+09

-0.383297E+0%

-0.383297E+0%

0.5119008409
1]

1.0

,0

108750.0
72500.00
33750.00

0. 987500E+07
0. 4447508407
0.193427E+07
Q.14B125E+038
0.987500E+07
0.468750E+07
0. 468750E+07
-0.229375E+07

4]

0.290859E410

0.193906E+410

0.91LL7L9E+Q9

0.911719E+09

~0.823281E+09
o

MAY BE FAKEN °

290000.0
135000.0

oD Do

. 395000E+08
L177900F+08
.229375E407
.9E7500E407
L9B7500F+07
CAE8VH0EH0Y
. 1875005408
.380000E407

0

LL93906EHL0
V911T19E+Q%
L911718F+C9
L8232B16409

0

188700.0

0. 1875008408
0. 2530506408
-0.114562E+07
G.AGET50E+07
0.468750L+07
Q. 4447 50E407
Q.177900E408
577500.0

0

0.857531L40%

0.557531E+0%

—0:38329 70T
G




